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Chapter 1

Economic Questions and Data,

There are no exercises in Chapter 1.



Chapter 2
Review of Probability

2.1. We know from Table 2.2 that Pr(Y =0) = 0.22, Pr(Y =1) = 0.78,
Pr(X =0) =0.30, Pr (X =1) =0.70. So

(a)

iy = E(Y)=0xPr(Y =0)+1xPr(Y =1)
= 0x0.22+1x0.78 =0.78,

iy = E(X)=0xPr(X=0)+1xPr(X=1)
= 0x0.30+1 x 0.70 = 0.70.

ok = B[(X )]
= (0—0.70)> X Pr(X = 0) 4+ (1 —0.70)> x Pr (X = 1)
= (=0.70)% x 0.30 + 0.302 x 0.70 = 0.21,

b = B\ -
= (0—0.78)*xPr(Y =0)+ (1-0.78)° x Pr (Y = 1)
= (—0.78)? x 0.22 +0.22% x 0.78 = 0.1716.

¢) Table 2.2 shows Pr (X =0, Y =0) = 0.15,Pr (X =0, Y =1) =0.15, Pr (X =1, Y
0.07, Pr(X =1,Y =1) = 0.63. So

oxy = cov(X,Y)=E[X —pux) (Y - py)]

= (0-0.70)(0—0.78) Pr (X =0, Y = 0)
+(0—0.70) (1 - 0.78) Pr (X =0,V =1)
+(1-0.70) (0—0.78) Pr(X =1, Y =0)
+(1-0.70)(1—-0.78)Pr(X =1,Y =1)

= (=0.70) x (—0.78) x 0.15 + (—0.70) x 0.22 x 0.15
40.30 x (—0.78) x 0.07 +0.30 x 0.22 x 0.63

= 0.084,

corr (X,v) = 2 _ OO s

Ox0Oy 0.21 x 0.1716



2.2. For the two new random variables W =3+ 6X and V = 20— 7Y, we have:
(a)

E(V)=EQ20-7Y)=20—7TE(Y)=20—7 x0.78 = 14.54,

EW)=E@3+6X)=3+6E(X)=3+6x0.70 =7.2.

oty = var (3+6X) =6 - 0% = 36 x 0.21 = 7.56,

0% =var (20 — 7Y) = (=7)% - 03 = 49 x 0.1716 = 8.4034.
(c)
owyv =cov(3+6X,20—TY)=6(=T7)cov(X,Y) =—42 x 0.084 = —3.528

—3.528
corr (W, V) = TWV_ = —0.4425.

owoy \/7.56 x 8.4084

2.3. The table shows that Pr(X =0,Y =0) = 0.045, Pr (X =0,Y =1) =
0.709, Pr(X =1,Y =0) = 0.005, Pr(X =1, Y =1) = 0.241, Pr(X = 0) =
0.754, Pr (X = 1) = 0.246, Pr (Y = 0) = 0.050, Pr (Y = 1) = 0.950.

(a)

E(Y) = py=0xPr(Y=0)+1xPr(Y=1)
= 0x0.050 + 1 x 0.950 = 0.950.

(b)

# (unemployed)
# (labor force)
= Pr(Y=0)=0050=1-0950=1-E(Y).

Unemployment Rate =



(c) We calculate the conditional probabilities first:
Pr(X=0,Y=0) 0045

Pr(Y =0[X=0)= = = 0.0597
r( | ) Pr (X = 0) 0.754 ’
Pr(X=0,Y=1) 0.709
Pr(Y =1X=0) = = = 0.9403
3 | ) Pr(X =0) 0.754 ’
Pr(X=1,Y=0) 0.005
r(Y =0 ) Pr(X =1) 0216~ 00203,
Pr(X=1,Y=1 0241
Pr(Y=1X=1)= Pr(X = 1) —0'246—0.9797.
The conditional expectations are
EY|X=1 = 0xPr(Y=0X=1)+1xPr(Y=1X=1)
0 x 0.0203 + 1 x 0.9797 = 0.9797,
E(Y|X=0) = 0xPr(Y=0X=0)+1xPr(Y=1/X=0)

= 0x0.0597 41 x 0.9403 = 0.9403.

(d) Use the solution to part (b),

Unemployment rate for college grads
= 1-E({Y|X=1)=1-0.9797 = 0.0203.

Unemployment rate for non-college grads
= 1-E({Y|X =0)=1-0.9403 = 0.0597.

(e) The probability that a randomly selected worker who is reported being
unemployed is a college graduate is

Pr(X=1Y=0) 0005

= =0.1.
Pr(Y =0) 0.050 "

Pr(X=1Y=0) =
The probability that this worker is a non-college graduate is
Pr(X=0Y=0=1-Pr(X=1Y=0)=1-0.1=0.9.

(f) Educational achievement and employment status are not independent be-
cause they do not satisfy that, for all values of x and y,

Pr(Y =yl X=2)=Pr (Y =y).



For example,

Pr (Y = 0|X = 0) = 0.0597 # Pr (Y = 0) = 0.050.

24. py =E(Y) =1, 0} =var(Y) = 4. With Z = 3 (Y — 1),

iz =B (300 =1) = 5 Gy 1) =

2.5. Using the fact that if Y ~ N (uy-, 0%) then Y;:fy ~ N (0, 1) and Appendix
Table 1, we have

40-50 Y —50 _ 52— 50
Pr(40<Y <52) = Pr( < < )

5 — 5 — 5
B(0.4) — & (—2) =B (0.4) — [1— & (2)]
= 0.6554 — 1+ 0.9772 = 0.6326.

6—5 Y -5 8—5H
Pr(6<Y <8) = Pr < <
(6<v <8 ( NI A, )
@ (2.1213) — @ (0.7071)
= 0.9831 — 0.7602 = 0.2229.



2.6. (a) When Y is distributed x2, Pr(Y < 6.63) = 0.99.
(b) When Y is distributed x3, Pr(Y < 7.78) = 0.90.

(c) When Y is distributed Fig o0, Pr(Y > 2.32) = 1-Pr(Y <2.32) =1-0.99 =
0.01.

2.7. The central limit theorem suggests that when the sample size (n) is large,

the distribution of the sample average (Y) is approximately N (,uy, O'%,) with

2
0% = 2. Given a population py = 100, 03, = 43.0, we have

(a) n =100, 02 = 2= = 43 — (.43, and

Y —100 < 101 — 100
V043 —  V/0.43

Pr(Y <101) = Pr ( ) ~ @ (1.525) = 0.9364.

- 2 _ oy _ 43 _
(b) n =165, 0y = =¥ = 1gz = 0.2606, and

"
=
=
V
N}
N
I

_ Y -1 -1
1—Pr(Y<98):1—Pr< OO<98 00)

1/0.2606 ~ +/0.2606
~ 1—®(-3.9178) = $(3.9178) = 1.000 (rounded to four decimal places).

(c) n =64, 05 = F = 57 = 0.6719, and

<101 —100 Y —100 _ 103 — 100>
Pr

V06719 ~ 0.6719 — /0.6719
® (3.6599) — @ (1.2200) = 0.9999 — 0.8888 = 0.1111.

Q

2.8. Pr(Y = $0) = 0.95, Pr(Y = $20000) = 0.05.
(a) The mean of Y is

fty =0 x Pr (Y = $0) + 20,000 x Pr (Y = $20000) = $1000.

The variance of Y is

b = B[ -]
= (0—1000)% x Pr(Y = 0) + (20000 — 1000)* x Pr (Y = 20000)
= (—1000)? x 0.95 4 19000 x 0.05 = 1.9 x 107,



ps
2

so the standard deviation of Y is oy = (1.9 x 107)* = $4359.
(b) (i) B (V) = py = $1000, 02 = T = L9107 _ 1 9 105,
(ii) Using the central limit theorem,
Pr (¥ >2000) = 1—Pr(¥ < 2000)
Y -1 2,000 — 1
- 1—Pr< 000 < ,000 ,000)

VIO X105~ /1.9 x 10
~ 11— (2.2042) =1 —0.9891 = 0.0109.

2.9. (a)
l
1
= ZPr(Y:yj\le’i)Pl"(szi)
i1
(b)
5 k 1
E(Y) = Y yPr(V=y) =3y Pr(¥ =yl|X =2)Pr(X =)

l k
= Z ZyjPr(Y:yj\Xzfci) Pr(X = ;)

i=1 \j=1
l
— ZE(Y|X =2;)Pr(X =).
=1

(¢) When X and Y are independent,

Pr(X=uz;,Y =y;) =Pr (X =x;) Pr (Y =y,),



SO
oxy = BE[(X —pux) (Y —py)]

l k
= DD (@i px) (y — ) Pr(X =Y =y)

i=1 j=1

1 k
= >N (@i —px) (W — py) Pr(X =) Pr(Y =y)

i=1 j=1

l k
= (Z MX PI“ ) Z //’Y PI“ Y_y])

2.10. X and Z are two independently distributed standard normal random
variables, so iy =y =0, 0% =04 =1, 0xz =0.

(a) Because of the independence between X and Z, Pr(Z = z|X = z)=Pr(Z )
and E(Z|X) = E(Z) = 0. Thus E(Y|X) = E (X2 + Z|X) = E(XQ\X
E(Z|X)=X?+0= X2

(b) E(X?) =o%k+pk =l,and py = E (X?+2) =E(X?)+puy, =140=1.
(c) E(XY)=E(X*+ZX)=E(X?) + E(ZX). Using the fact that the odd
moments of a standard normal random variable are all zero, we have F/ (X 3) =0.
Using the independence between X and Z, we have E (ZX) = pzux = 0. Thus
E(XY)=E(X*) +E(ZX)=0.

(d)

cov(XY) = E[(X —pux) (Y —py)]l = E[(X-0)(Y -1)]
= E(XY - X)=E(XY)- E(X)
= 0-0=0
corr(X,Y) = 22X = aXan = 0.



Chapter 3
Review of Statistics

3.1. The central limit theorem suggests that when the sample size (n) is large,

the distribution of the sample average (Y) is approximately N (,uy, 0'%7) with

2
0% = 2. Given a population py = 100, 03, = 43.0, we have

(a) n =100, 03 = % =8 =043, and

Y — 100 < 101 — 100
v0.43 v0.43

Pr (Y <101) =Pr < ) ~ @ (1.525) = 0.9364.

02
(b) n =64, 02 = Z¥ = 33 = 0.6719, and

r<101 ~100 _ ¥ 100 _ 103 100)
V06719  0.6719 06719
® (3.6599) — @ (1.2200) = 0.9999 — 0.8888 = 0.1111.

Pr(101 <Y <103) =

Q

- 2 oy _ 43 _
(c) n =165, 0f = =¥ = 1gz = 0.2606, and

Pr(Y >98) = 1—Pr(Y§98)—1—Pr<Y100 <98100)

V/0.2606 — /0.2606
~ 1—3(-39178) = ®(3.9178) = 1.0000 (rounded to four decimal places).

3.2. Each random draw Y; from the Bernoulli distribution takes a value of either
zero or one with probability Pr(Y; = 1) = p and Pr(Y; = 0) = 1—p. The random
variable Y; has mean

E(Y;)=0xPr(Y=0)+1xPr(Y =1)=p,
and variance
var (V) = E[(Y—py)’
= (0-p)>xPr(Y;=0)+(1—-p) xPr(¥; =1)
= pPU-p+1-p’p=p1-p).

(a) The fraction of successes is

o flucces)  #(=1) FL ¥ o
n n n




n

var (p) = var <—Zi;1 YZ) = % Zvar (Y;) = % Zp(l —p) = p—(ln—p)'

i=1

The second equality uses the fact that Y1, ..., Y,, areii.d. draws and cov(Y;,Y;) =
0, for ¢ # j.

3.3. Denote each voter’s preference by Y. Y = 1 if the voter prefers the
incumbent and Y = 0 if the voter prefers the challenger. Y is a Bernoulli
random variable with probability Pr(Y =1) = p and Pr(Y =0) = 1 — p. As
we have seen from the solution to Exercise 3.2, Y has mean p and variance

p(1—p).

(a) From the solution to Exercise 3.2, we know an unbiased estimator of p is
s 215 _
P = f55 = 0.5375.

(b) var(p) = ﬁ(l ) — & 5375><£(1)ao.5375) = 6.2148 x 10~%. The standard error is

SE(p) = (var (p ))2 = 0.0249.

(¢) The computed t-statistic is

P—t,0  0.5375— 0.5
tact — b9 _ = 1.506.
SE () 0.0249

Because of the large sample size (n = 400), we can use Equation (3.13) in the
text to get the p-value for the test Hy : p = 0.5 vs. Hy : p #£ 0.5:

p-value = 28 (— [t*'|) = 2® (~1.506) = 2 x 0.066 = 0.132.

(d) Using Equation (3.17) in the text, the p-value for the test Hy : p = 0.5 vs.
Hy:p>05is

pvalue = 1 — @ (1°) = 1 —  (1.506) = 1 — 0.934 = 0.066.

10



(e) Part (c) is a two-sided test and the p-value is the area in the tails of the
standard normal distribution outside +(calculated ¢-statistic). Part (d) is a one-
sided test and the p-value is the area under the standard normal distribution to
the right of the calculated t-statistic.

(f) For the test Hy : p = 0.5 vs. H; : p > 0.5, we cannot reject the null
hypothesis at the 5% significance level. The p-value 0.066 is larger than 0.05.
Equivalently the calculated t-statistic 1.506 is less than the critical value 1.645
for a one-sided test with a 5% significance level. The test suggests that the
survey did not contain statistically significant evidence that the incumbent was
ahead of the challenger at the time of the survey.

3.4. Using Key Concept 3.7 in the text

(a) 95% confidence interval for p is

p £ 1.96SE (p) = 0.5375 £+ 1.96 x 0.0249 = (0.4887, 0.5863) .

(b) 99% confidence interval for p is
p £ 2.57SE (p) = 0.5375 £ 2.57 x 0.0249 = (0.4735, 0.6015) .

(¢c) The interval in (b) is wider because of a larger critical value due to a lower
significance level.

(d) Since 0.50 lies inside the 95% confidence interval for p, we cannot reject the
null hypothesis at a 5% significance level.

3.5. Denote the life of a light bulb from the new process by Y. The mean of Y’
is p and the standard deviation of Y is oy = 200 hours. Y is the sample mean
with a sample size n = 100. The standard deviation of the sampling distribution

of Yisoy = % = % = 20 hours. The hypothesis test is Hy : = 2000 vs.

Hy : > 2000. The manager will accept the alternative hypothesis if Y > 2100
hours.

(a) The size of a test is the probability of erroneously rejecting a null hypothesis
when it is valid. The size of the manager’s test is

size. = Pr(Y >2100|u =2000) =1 —Pr (Y < 2100/ = 2000)
Y —2000 _ 2100 — 2000
= 1-P < =2
g ( ST T OOO)

1—®(5) =1-0.999999713 = 2.87 x 10~".

11



Pr (Y > 2100| = 2000) means the probability that the sample mean is greater
than 2100 hours when the new process has a mean of 2000 hours.

(b) The power of a test is the probability of correctly rejecting a null hypothesis
when it is invalid. We calculate first the probability of the manager erroneously
accepting the null hypothesis when it is invalid:

Y 2150 _ 2100 — 2150
20 20
= ®(-25)=1-®(2.5)=1-0.9938 = 0.0062.

B = Pr(Y <2100/u = 2150) = Pr < = 2150)

The power of the manager’s testing is 1 — =1 — 0.0062 = 0.9938.

(¢) For a test with 5%, the rejection region for the null hypothesis contains those
values of the t-statistic exceeding 1.645.

yaet — 2000
20

tact _

> 1.645 = Y% > 2000 + 1.645 x 20 = 2032.9.

The manager should believe the inventor’s claim if the sample mean life of the
new product is greater than 2032.9 hours if she wants the size of the test to be

5%.

3.6. (a) New Jersey sample size n; = 100, sample average Y; = 58, sample

standard deviation s, = 8. The standard error of Y; is SE ()71) = \/S—;—l = _ﬁfoo =

0.8. The 95% confidence interval for the mean score of all New Jersey third
graders is

py = Y1 + 1.96SE (V1) = 58 + 1.96 x 0.8 = (56.432, 59.568) .

(b) Iowa sample size ny = 200, sample average Yo = 62, sample standard
deviation s; = 11. The standard error of Y1 — Y3 is SE(Y; — Y3) = \/2—? + Z—% =

% + % = 1.1158. The 90% confidence interval for the difference in mean

score between the two states is

p—py = (Yi—Y2) £ 164SE (V1 - V2)
= (58 —62) £ 1.64 x 1.1158 = (—5.8299, —2.1701).

(c) The hypothesis tests for the difference in mean scores is

Hy:py —py=0 vs. Hy:py —py #0.

12



From part (b) the standard error of the difference in the two sample means is
SE(Y; — Y2) = 1.1158. The t-statistic for testing the null hypothesis is

pact _ Y-V, _ 58—162

=3B (571 —)72) = T1ms — —3.5849.

Use Equation (3.13) in the text to compute the p-value:
p-value = 2@ (— [t*“"|) = 2@ (—3.5849) = 2 x 0.00017 = 0.00034.

Because of the extremely low p-value, we can reject the null hypothesis with
a very high degree of confidence. That is, the population means for Iowa and
New Jersey students are different.

3.7. Assume that n is an even number. Then Y is constructed by applying a
weight of % to the § “odd” observations and a weight of % to the remaining %
observations.

~ 1/1 3 1 3
B(Y) = g(§Em)+§E(n>+---5E(Yn1)+5E(Yn>)
_ Yfin 31 _
= o\ gy Ty gy | T My
~ 1 /1 9 1 9
var (Y) = = (Zvar (Y1) + =var (Ya) + - - 7var (Yoo1) + Zvar (Yn)>

4
1 9 2

1 n 5 no o oy
— - 2. — 125X,
n2<4 3 VT3 JY) "

3.8. Sample size for men n; = 100, sample average Y; = 3100, sample standard
deviation s, = 200. Sample size for women ny = 64, sample average Yz =
2900, sample standard deviation ss = 320. The standard error of Y7 — Y5 is

SE(Yi — o) = /2 + 2 = /2002 | 2% _ 4y 79,

(a) The hypothesis test for the difference in mean monthly salaries is
Hy:py —py=0 vs. Hy:py —py #0.
The t-statistic for testing the null hypothesis is

jaer _ _Y1—Ya 3100 — 2900

=3B (371 — }72) =l - 4.4722.

13



Use Equation (3.13) in the text to get the p-value:
p-value = 2& (— [t°|) = 20 (—4.4722) = 2 x (3.8744 x 107°) = 7.7488 x 107°.

The extremely low level of p-value implies that the difference in the monthly
salaries for men and women is statistically significant. We can reject the null
hypothesis with a high degree of confidence.

(b) From part (a), there is overwhelming statistical evidence that mean earnings
for men differ from mean earnings for women. To examine whether there is
gender discrimination in the compensation policies, we take the following one-
sided alternative test

Ho:py —po=0 vs. Hy:pg —pe>0.
With the t-statistic 12 = 4.4722, the p-value for the one-sided test is:

p-value =1— & (¢*") =1— & (4.4722) = 1 — 0.999996126 = 3.874 x 10~°.

With the extremely small p-value, the null hypothesis can be rejected with a
high degree of confidence. There is overwhelming statistical evidence that mean
earnings for men are greater than mean earnings for women.

However, by itself, this does not imply gender discrimination by the firm.
Gender discrimination means that two workers, identical in every way but gen-
der, are paid different wages. The data description suggests that some care has
been taken to make sure that workers with similar jobs are being compared.
But, it is also important to control for characteristics of the workers that may
affect their productivity (education, years of experience, etc.). If these charac-
teristics are systematically different between men and women, then they may be
responsible for the difference in mean wages. (If this is true, it raises an inter-
esting and important question of why women tend to have less education or less
experience than men, but that is a question about something other than gender
discrimination by this firm.) Since these characteristics are not controlled for
in the statistical analysis, it is premature to reach a conclusion about gender
discrimination.

3.9. (a) Sample size n = 420, sample average ¥ = 654.2, sample standard

deviation sy = 19.5. The standard error of Y is SE(Y) = S—\/‘;—L = \}% = 0.9515.

The 95% confidence interval for the mean test score in the population is

p=Y +£1.96SE (V) = 654.2 + 1.96 x 0.9515 = (652.34, 656.06) .

(b) The data are: sample size for small classes n; = 238, sample average Y; =
657.4, sample standard deviation s, = 19.4; sample size for large classes ny =

14



182, sample average Yo = 650.0, sample standard deviation s, = 17.9. The
— — — — 82 82

standard error of Y7 — Y5 is SE(Yl —Yg) = \/n—ll + n_22 = \/% + 1175;32 =

1.8281. The hypothesis tests for higher average scores in smaller classes is

Ho:py —py=0 vs. Hy:py —py>0.
The t-statistic is

Yi-Y, 657.4 — 650.0
tact — = = 4.0479.
SE (Y1 — Y2) 1.8281

The p-value for the one-sided test is:

pvalue = 1 — @ (1%) = 1 — @ (4.0479) = 1 — 0.999974147 = 2.5853 x 10~°.

With the small p-value, the null hypothesis can be rejected with a high degree
of confidence. There is statistically significant evidence that the districts with
smaller classes have higher average test scores.

3.10. We have the following relations: 1lin = 0.0254m (or 1m = 39.37in),
1lb = 0.4536kg (or 1kg = 2.20461b). The summary statistics in the metric
system are X = 70.5 x 0.0254 = 1.79m; Y = 158 x 0.4536 = 71.669kg; sx =
1.8x0.0254 = 0.0457m; sy = 14.2x0.4536 = 6.4411kg; sxy = 21.73x0.0254 x
0.4536 = 0.2504m x kg, and rxy = 0.85.

3.11. Yi,...,Y, are iid. with mean p, and variance a%. The covariance

cov(Y;,Y;) = 0, j # i. The sampling distribution of the sample average ¥ has

— 2
mean puy and variance var (Y) = 0'%—/ =2

E{ [(Yi — py) (Y*“Y)]z}
_ E[Y Ly ) 2(Yruy)(f’*ﬂy)+(?*ﬂY)2}
E[Y iy ) } —2E [(Yi — py) (Y — py) | +E[(Y*”Y)2]
= var (Y;) — 2cov (YL,Y) + var (Y)

15



E[Y NY (Y — #Y)]

(G
(o)

B[] 4 1 S — ) (Y ay)
775L

L2
nUy+ Zcov (Y;,Y5)
J#i
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Chapter 4
Linear Regression with One Regressor

4.1. (a) The predicted average test score is

TestScore = 520.4 — 5.82 x 22 = 392.36.

(b) The predicted change in the classroom average test score is

ATestScore = (—5.82 x 19) — (—5.82 x 23) = 23.28.

(c) The 95% confidence interval for 3, is {—5.82 = 1.96 x 2.21}, that is, —10.152 <
By < —1.4884.

(d) Calculate the t-statistic first

3,0 582
pact — P1 =0 =582 eane

SE (31) 2.21

The p-value for the test Hy: 8, =0vs. Hy: (8, #0is

p — value = 2® (— [t*"|) = 20 (—2.6335) = 2 x 0.0042 = 0.0084.

The p-value is less than 0.01, so we can reject the null hypothesis at the 5%
significance level, and also at the 1% significance level.

(e) Using the formula for 3, in Equation (4.9), we know the sample average of
the test scores across the 100 classrooms is

TestScore = By + By x C'S = 520.4 — 5.82 x 21.4 = 395.85.

(f) Use the formula for the standard error of the regression (SER) in Equation
(4.40) to get the sum of squared residuals:

SSR = (n—2)SER? = (100 — 2) x 11.5% = 12961.

17



Use the formula for R? in Equation (4.39) to get the total sum of squares:

SSR _ 12961 — 13044,

T =
58 1-R? 1-0.082

The sample variance is s2 = 193 = 13044 — 131 8 Thus, standard deviation is

n—1 99
Sy = \/5% =11.5.

4.2. (a) The estimated gender gap equals 51 = $2.79/hour.

(b) The hypothesis testing for the gender gap is Hy : §; =0 vs. H;y : 8; # 0.
With a t-statistic

sact _ B -0 _ 279
SE (Bl) 0.84

= 3.3214,

the p-value for the test is
p-value = 2@ (— [t*|) = 2@ (—3.3214) = 2 x 0.0004 = 0.0008.

The p-value is less than 0.01, so we can reject the null hypothesis that there is
no gender gap at a 1% significance level.

(c) The 95% confidence interval for the gender gap §; is {2.79 £+ 1.96 x 0.84},
that is, 1.1436 < 8, < 4.4364.

(d) The sample average wage of women is 3, = $12.68/hour. The sample
average wage of men is 8, + 0, = $15.47/hour.

(e) The binary variable regression model relating wages to gender can be written
as either

Wage = 5, + 8, Male + u;,
or
Wage = v, + v, Female + v;.

In the first regression equation, Male equals 1 for men and 0 for women; (3 is
the population mean of wages for women and 3, + 3, is the population mean of
wages for men. In the second regression equation, Female equals 1 for women
and 0 for men; v, is the population mean of wages for men and ~q + v, is the
population mean of wages for women. We have the following relationship for
the coefficients in the two regression equations:

Yo = Bo+ B,
Yo + 71 Bo-
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Given the coefficient estimates Bo and [31, we have
Yo = Bo+ B3, =1541,
Y1 = Bo—% =P =-279.

Due to the relationship among coefficient estimates, for each individual observa-
tion, the OLS residual is the same under the two regression equations: u; = ;.

Thus the sum of squared residuals, SSR = " 47, is the same under the two
1

regressions. This implies that both SER = (%)E and R? = 1 — 238 are
unchanged.
In summary, in regressing Wages on Female, we will get

Wages = 15.47 — 2.79Female, ~ R? =0.06, SER = 3.10.

4.3. Using E (u;|X;) = 0, we have

E(Yi|Xi) = E(By + 51 Xi +wi| Xi) = By + B E (Xi] Xi) + E (ui]| Xi) = By + 51 Xi

4.4. The expectation of [30 is obtained by taking expectations of both sides of
Equation (4.9):

()

E(Y—Bl)_() —E

i=1
= /30+E(51 _31) X"‘%ZE(W‘XJ = bo,
i=1

where the third equality in the above equation has used the facts that 31 is
unbiased so E (ﬁl - 31) =0 and E (u;]X;) =0.

4.5. The sample size n = 200. The estimated regression equation is

Weight = —99.41 + 3.94 Height, ~ R*=0.81, SER = 10.2.
(215)  (0:31)

(a) Substituting Height = 70, 65, and 74 inches into the equation, the predicted
weights are 176.39, 156.69, and 192.15 pounds.

(b) AWeight = 3.94 x AHeight = 3.94 x 1.5 = 5.91.
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(¢) The 99% confidence interval for the weight increase is

5.91 + 2.58 x SE (3,) x AHeight 5.91 +2.58 x 0.31 x 1.5

[4.7103, 7.1097] .

(d) We have the following relations: 1in = 2.54 cm and 11b = 0.4536 kg. Suppose
the regression equation in the centimeter-kilogram space is

@t =%, + 7, Height.

The coeflicients are 4, = —99.41 x 0.4536 = —45.092kg with a standard error
SE(§o) = 2.15 x 0.4536 = 0.9752kg; 4, = 3.94 x %236 = 0.7036kg with a
standard error SE(%;) = 0.31 x %236 = 0.0554kg /cm. R? is respective of
the units of variables, so it remains at R? = 0.81. The standard error of the

regression is SER = 10.2 x 0.4536 = 4.6267.

4.6. Equation (4.15) gives

2 var (Hlul) Mo
0% = ——1 where H; =1 — X;.
Yo (B @) ' E(X3)"

Using the facts that F (u;|X;) = 0 and var(u;|X;) = 02 (homoskedasticity), we
have

My My
E(Hw) = E(w— —2_Xju)=E(w) - —2—F[X,E (u]X;
_ - M _
= O gy 2 0=0
and

E [(Hiuiﬂ = F { (u’ - ﬁfff)&ui)g}
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Because F (H;u;) =0, var(H;u;) =FE [(Hlul)ﬂ ,S0

var (Hyu;) = E [(Hiui)ﬂ - (1 . )ag.

We can also get

B E{(l - E?LX)X)} _E{l BCEon [EfLX)]X}

2 2 2
:uz :u’w 2 /’LI
= — E(X7)=1-
U2t |wt) PO =1 B
Thus
2
1— Ko 2
5 var (H;u;) ( E(Xf)) Tu o2
g -~ = = =
Po n[E (H?) 2\’ Bz
PEL w(1- o) 2 (-t
_ BE(X})e EX]oan
- on[BE(XP)-p?] nok
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Chapter 5
Linear Regression with Multiple Regressors

5.1. The hypothesis testing for the significance of a coefficient (5) is Hp: 3 =10
vs. Hy : 8 # 0. The coefficient estimate is significantly different from 0 if the

computed t-statistic %<t = SEB( 3 is larger than the critical value, which is 1.96

at a 5% significance level and 2.58 at a 1% significance level. See the table
for the added “*” (5%) or “**” (1%) to indicate statistical significance of the

coefficient.

Dependent Variable: Average Hourly Earning (AHFE)
Regressor (1) (2) (3)
College (X7) 5.46** 5.48** 5.44**

(0.21) (0.21) (0.21)

Female (X2) 2647 | —2.627 | —2.62°
(0.20) (0.20) (0.20)

Age (X 0.29** 0.29**
ge (Xa) (0.04) (0.04)
Northeast (X4) 0.69*
(0.30)

Midwest (X5) 0.60*
(0.28)

South (Xp) —0.27
(0.26)

Intercept (X7) 12.69** | 4.40** 3.75%*
(0.14) (1.05) (1.06)

Summary Statistics and Joint Tests

F-statistic for regional effects = 0 6.10
SER 6.27 6.22 6.21
R? 0.176 0.190 0.194
R? 0.175 0.189 0.193
n 4000 4000 4000

5.2. By equations (5.29) and (5.30) in the text, we know
n—1

RP=1—-—
n—k—1

(1-R?).
See the table above for the computed R? for each of the regressions.
5.3. (a) Workers with college degrees earn $5.46 /hour more, on average, than

workers with only high school degrees. The significance test from Exercise (5.1)
suggests that the earnings difference is statistically significant at the 5% level.

(b) Men earn $2.64/hour more, on average, than women. The significance test
from Exercise (5.1) suggests that the earnings difference is statistically signifi-
cant at the 5% level.
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5.4. (a) Age is an important determinant of earnings since the coefficient as-
sociated with age is found to be statistically significant at the 1% level. On
average, a worker earns $0.29/hour more for each year he ages.

(b) Sally’s earnings prediction is 4.40+5.48 x1—2.62x 1+0.29x 29 = 15.67 dollars
per hour. Betsy’s earnings prediction is 4.404+5.48x1—2.62x140.29x34 = 17.12
dollars per hour. The difference is 1.45, and the 95% confidence interval is
1.454+1.96 x 0.04 x 5 = [1.058, 1.842].

5.5. (a) The F-statistic for the null hypothesis that the coefficients on the
regional effects are jointly equal to zero is 6.10. This is larger than the 1% critical
value of 3.78, so that the regional effects are jointly significant. Inspection of
the results for each region shows that, at the 5% level, earnings in the Northeast
and Midwest are significantly different from earnings in the West; there is no
significant difference between the South and the West.

(b) The regressor West is omitted to avoid the perfect multicollinearity problem.
If West is included, then the intercept can be written as a perfect linear function
of the four regional regressors. Because of perfect multicollinearity, the OLS
estimator cannot be computed.

(c.i) The 95% confidence interval for the difference in expected earnings between
Juanita and Molly is —0.27 4+ 1.96 x 0.26 = [—0.7796, 0.2396] .

(c.ii) The expected difference in earnings between Juanita and Jennifer is —0.27—
0.6 = —0.87.

(c.iii) To construct a 95% confidence interval for the difference in expected earn-
ings between Juanita and Jennifer, we could include West and exclude Midwest
from the regression. The estimated coefficient associated with South would then
give the expected difference in earnings between Juanita and Jennifer. The esti-
mated coefficient and its standard error could be used to compute the confidence
interval as in part (c.i).

5.6. The t-statistic for the difference in the college coefficients is
= (660”696,1998 - 5college,1992)/SE(ﬁcollege,1998 - lgcollege,1992)

Because [.giiege,1998 @04 Beojege 1992 are computed from independent sam-

ples, they are independent, which means that cov(B.oiege 1998 Beoliege,1992) =

o~ ~ o~

0 Thus, Var(ﬁcouege,wgs - 5college,1992) :Var(ﬁcollege,wgs) + Va‘r(ﬂcollege,1998)‘
1
3

This implies that SE(B,opege. 1008 — Beottege. 1002) = (0-212 +0.202) 7. Thus,

A48 — 5.2
tact — M = 0.6552.

(0.212 4 0.202)
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There is no significant change since the calculated t-statistic is less than 1.96,
the 5% critical value.

5.7. In isolation, these results do imply gender discrimination. Gender discrim-
ination means that two workers, identical in every way but gender, are paid
different wages. It is also important to control for characteristics of the workers
that may affect their productivity (education, years of experience, etc.) If these
characteristics are systematically different between men and women, then they
may be responsible for the difference in mean wages. (If this were true, it would
raise an interesting and important question of why women tend to have less
education or less experience than men, but that is a question about something
other than gender discrimination.) These are potentially important omitted
variables in the regression that will lead to bias in the OLS coeflicient estimator
for Female. Since these characteristics were not controlled for in the statistical
analysis, it is premature to reach a conclusion about gender discrimination.

5.8. (a) Estimate

Yi = By + X1 + By (X1i + Xoi) + 14
and test whether v = 0.
(b) Estimate

Y = By + X1 + By (Xoi — aXy;) + s
and test whether v = 0.
(c) Estimate

Y — X1 = By + v X1 + By (Xos — X14) + w4

and test whether v = 0.

. 2 _ 1_SSR p2 P2 _ SSRyestricted—SSRunrestricted
5.9. Because R” =1 TSSSS7RRunrest7‘icted Rrestricted - TSS
2 — unrestricted 3
and 1 — Ry icteq = —sggeicted . Thus from Equation (5.39) we have
2 2
F = (Ru'nrestricted — Rrestricted) /q

(1 - Rinrestricted) / (n - kun?”estricted - 1)
SSR'r'cst—l'i.ctcd_SSRunrcstv'ictcd/
TSS q

SSRU%TSC'?”Cth / (Tl - kunrestricted - 1)

(SSRrestricted - SSRunrestricted) /q
SSRun'r’estricted/ (n - kunrestricted - 1)

which is Equation (5.38).
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Chapter 6
Nonlinear Regression Functions

6.1. (a) The percentage increase in sales is 100 x 128196 — 1.0204%. The
approximation is 100 x [In (198) — In (196)] = 1.0152%.

(b) When Salesagopz = 205, the percentage increase is 100 x % = 4.5918%

and the approximation is 100 x [In (205) — In (196)] = 4.4895%.

When Salessgge = 250, the percentage increase is 100 X % = 27.551%

and the approximation is 100 x [In (250) — In (196)] = 24.335%.

When Salessgoz = 500, the percentage increase is 100 x 38=19¢ — 155 1%
and the approximation is 100 x [In (500) — In (196)] = 93.649%.

(¢) The approximation works well when the change is small. The quality of the
approximation deteriorates as the percentage change increases.

6.2. (a) According to the regression results in column (1), the house price is
expected to increase by 21% (100% x 0.00042 x 500 = 21%) with an additional
500 square feet and other factors held constant. The 95% confidence inter-
val for the percentage change is 100% x 500 x (0.00042 + 1.96 x 0.000038) =
[17.276%, 24.724%).

(b) Because the regressions in columns (1) and (2) have the same dependent
variable, we can use R? to compare the fit of these two regressions. The log-log
regression in column (2) has the higher R?, so it is better to use In (Size) to
explain house prices.

(c) The house price is expected to increase by 7.1% (100% x 0.071 x 1 =
7.1%) if the house has a swimming pool with other factors held constant.
The 95% confidence interval for this effect is 100% x (0.071 4 1.96 x 0.034) =
[0.436%, 13.764%)].

(d) The house price is expected to increase by 0.36% (100% x 0.0036 x 1 =
0.36%) with an additional bedroom while other factors are held constant. The
effect is not statistically significant at a 5% significance level: [t| = 069003376 =
0.09730 < 1.96. A reason is that we have held the size of the house constant

while considering the effect of adding an additional bedroom.

() The quadratic term In (Size)” is not important. The coefficient estimate is
not statistically significant at a 5% significance level: |t| = % = 0.05571 <
1.96.
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(f) The house price is expected to increase by 7.1% (100% x 0.071 x 1 = 7.1%)
when a swimming pool is added to a house without a view and other factors
are held constant. The house price is expected to increase by 7.32% (100% x
(0.071 x 14 0.0022 x 1) = 7.32%) when a swimming pool is added to a house
with a view and other factors are held constant. The difference in the expected
percentage change in price is 0.22%. The difference is not statistically significant

at a 5% significance level: || = %222 = 0.022 < 1.96.

6.3. (a) The regression functions for hypothetical values of the regression co-
efficients that are consistent with the educator’s statement are: 3; > 0 and
By < 0. When TestScore is plotted against ST R the regression will show three
horizontal segments. The first segment will be for values of STR < 20; the
next segment for 20 < STR < 25; the final segment for ST R > 25. The first
segment will be higher than the second, and the second segment will be higher
than the third.

(b) It happens because of perfect multicollinearity. With all three class size
binary variables included in the regression, it is impossible to compute the OLS
estimates because the intercept is a perfect linear function of the three class size
regressors.

6.4. Note that
Y = By+ 06X +08,X7
= Bo+ (B +218,) X + B, (X? —21X).
We can define a new independent variable Z = X2 — 21X, and estimate
Y =0y +7X + 022 4 us.
The confidence interval is 4 + 1.96 xSE(%).

65 (a) AY = f(Xl + AXl, XQ) — f(Xl, Xg) = ﬂlAXl + 53AX1 X XQ, SO
AA)Z =053 Jr/63X2-

(b) AY = f (X1, Xa + AXy) — f (X1, X2) = BoAXy + 3 X1 X AX, 50 7% =
Ba + B3X1.

(c)
AY = [f(X1+AXy, Xo+AXs)— f(Xy, Xo)
= [o+ 01 (X1 +AX))+ 58y (Xo+AXo) + 3 (X1 +AXy) (X2 + AXo)
— (B + B1 X1 + B Xo + 33 X1 X5)
= (81 + B3X2) AXq + (By + B3X1) AXz + B3AX1A X,
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Chapter 7
Assessing Studies Based on Multiple Regression

7.1. As explained in the text, potential threats to external validity arise from
differences between the population and setting studied and the population and
setting of interest. The statistical results based on New York in the 1970’s are
likely to apply to Boston in the 1970’s but not to Los Angeles in the 1970’s. In
1970, New York and Boston had large and widely used public transportation
systems. Attitudes about smoking were roughly the same in New York and
Boston in the 1970s. In contrast, Los Angeles had a considerably smaller
public transportation system in 1970. Most residents of Los Angeles relied on
their cars to commute to work, school, and so forth.

The results from New York in the 1970’s are unlikely to apply to New York
in 2002. Attitudes towards smoking changed significantly from 1970 to 2002.

7.2. (a) When Y; is measured with error, we have Y, =Y, +w,;, orY; =Y; — w;.
Substituting the 2nd equation into the regression model Y; = 8, + 5, X; + w;
gives Y; —w; = By + 51 Xi + s, or Y; = By + 51X +u; +w;. Thus v; = u; +w;.

(b) (1) The error term v; has conditional mean zero given X;:

(2) 17, = ~Y7 +w; is i.i.d since both Y; and w; are i.i.d. and mutually independent;
X, and Y; (¢ # j) are independent since X; is independent of both Y; and w;.

Thus, (Xi, ffz), i =1,...,n are i.i.d. draws from their joint distribution.

(3) v; = u; + w; has a finite fourth moment given that both w; and w; have
finite fourth moments and are mutually independent. So (X;, v;) have nonzero
finite fourth moments.

(c) The OLS estimators are consistent because the least squares assumptions
hold.

(d) Because of the validity of the least squares assumptions, we can construct
the confidence intervals in the usual way.

(e) The answer here is the economists’ “On the one hand, and on the other
hand.” On the one hand, the statement is true: i.i.d. measurement error in X
means that the OLS estimators are inconsistent and inferences based on OLS
are invalid. OLS estimators are consistent and OLS inference is valid when
Y has i.i.d. measurement error. On the other hand, even if the measurement
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error in Y is i.i.d. and independent of Y; and X;, it increases the variance of
the regression error (02 = 02 + ¢2)), and this will increase the variance of the
OLS estimators. Also, measurement error that is not i.i.d. may change these

results, although this would need to be studied on a case-by-case basis.

7.3. The key is that the selected sample contains only employed women. Con-
sider two women, Beth and Julie. Beth has no children, Julie has one child.
Beth and Julie are otherwise identical. Both can earn $25,000 per year in the
labor market. Each must compare the $25,000 benefit to the costs of working.
For Beth, the cost of working is forgone leisure. For Julie, it is forgone leisure
and the costs (pecuniary and other) of child care. If Beth is just on the margin
between working in the labor market or not, then Julie, who has a higher op-
portunity cost, will decide not to work in the labor market. Instead, Julie will
work in “home production,” caring for children, and so forth. Thus, on average,
women with children who decide to work are women who earn higher wages in
the labor market.
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Chapter 8
Regression with Panel Data

8.1. (a) With $1 increases in the beer tax, the expected number of lives that
would be saved is 0.45 per 10,000 people. Since New Jersey has a population of
8.1 million, the expected number of lives saved is 0.45 x 810 = 364.5. The 95%
confidence interval is (0.45 £+ 1.96 x 0.22) x 810 = [15.228, 713.77].

(b) When New Jersey lowers its drinking age from 21 to 18, the expected fatality
rate increases by 0.028 deaths per 10,000. The 95% confidence interval for
the change in death rate is 0.028 & 1.96 x 0.066 = [—0.1014, 0.1574]. With a
population of 8.1 million, the number of fatalities will increase by 0.028 x 810 =
22.68 with a 95% confidence interval [—0.1014, 0.1574] x 810 = [—82.134, 127.49].

(c) When real income per capita in New Jersey increases by 1%, the expected
fatality rate increases by 1.81 deaths per 10,000. The 90% confidence interval for
the change in death rate is 1.81 + 1.64 x 0.47 = [1.04, 2.58]. With a population
of 8.1 million, the number of fatalities will increase by 1.81 x 810 = 1466.1 with
a 90% confidence interval [1.04, 2.58] x 810 = [840, 2092].

(d) The low p-value (or high F-statistic) associated with the F-test on the
assumption that time effects are zero suggests that the time effects should be
included in the regression.

(e) The difference in the significance levels arises primarily because the esti-
mated coefficient is higher in (5) than in (4). However, (5) leaves out two
variables (unemployment rate and real income per capita) that are statistically
significant. Thus, the estimated coefficient on Beer Tax in (5) may suffer from
omitted variable bias. The results from (4) seem more reliable. In general, sta-
tistical significance should be used to measure reliability only if the regression is
well-specified (no important omitted variable bias, correct functional form, no
simultaneous causality or selection bias, and so forth.)

(f) Define a binary variable west which equals 1 for the western states and 0 for
the other states. Include the cross term between the binary variable west and
the unemployment rate, west x (unemployment rate), in the regression equation
corresponding to column (4). Suppose the coefficient associated with unemploy-
ment rate is 3, and the coefficient associated with west x (unemployment rate)
is 7. Then § captures the effect of the unemployment rate in the eastern states,
and (§ + v captures the effect of the unemployment rate in the western states.
The difference in the effect of the unemployment rate in the western and east-
ern states is . Using the coefficient estimate (¥) and the standard error SE(%),
we can calculate the t-statistic to test whether v is statistically significant at a
given significance level.
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8.2. (a) For each observation, there is one and only one binary regressor equal
to one. That iS, Dlz + D21 + D31 =1= XO,'L't-

(b) For each observation, there is one and only one binary regressor that equals
1. That is, D1, + D2;+---+Dn; =1= XO,it~

(¢) The inclusion of all the binary regressors and the “constant” regressor causes
the perfect multicollinearity problem. The constant regressor is a perfect linear
function of the n binary regressors. OLS estimators cannot be computed in
this case. Your computer program should print out a message to this effect.
(Different programs print different messages for this problem. Why not try this,
and see what your program says?)

8.3. The five potential threats to the internal validity of a regression study are:
omitted variables, misspecification of the functional form, imprecise measure-
ment of the independent variables, sample selection, and simultaneous causality.
You should think about these one-by-one. Are there important omitted vari-
ables that affect traffic fatalities and that may be correlated with the other
variables included in the regression? The most obvious candidates are the
safety of roads, weather, and so forth. These variables are essentially constant
over the sample period, so their effect is captured by the state fixed effects. You
may think of something that we missed. Since most of the variables are binary
variables, the largest functional form choice involves the Beer Tax variable. A
linear specification is used in the text, which seems generally consistent with the
data in Figure 8.2. To check the reliability of the linear specification, it would
be useful to consider a log specification or a quadratic. Measurement error does
not appear to a problem, as variables like traffic fatalities and taxes are accu-
rately measured. Similarly, sample selection is a not a problem because data
were used from all of the states. Simultaneous causality could be a potential
problem. That is, states with high fatality rates might decide to increase taxes
to reduce consumption. Expert knowledge is required to determine if this is a
problem.
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Chapter 9
Regression with a Binary Dependent Variable

9.1. Using the probit model in Equation (9.8):
(a) For a black applicant having a P/I ratio of 0.35, the probability that the ap-
plication will be denied is ® (—2.26 + 2.74 x 0.35 + 0.71) = &(—0.59) = 27.76%.

(b) With the P/I ratio reduced to 0.30, the probability of being denied is
D (—2.26 +2.74 x 0.30 + 0.71) = &(—0.73) = 23.27%. The difference in denial
probabilities compared to (a) is 4.4 percentage points lower.

(¢) For a white applicant having a P/I ratio of 0.35, the probability that the
application will be denied is ® (—2.26 4+ 2.74 x 0.35) = 9.7%. If the P/I ratio
is reduced to 0.30, the probability of being denied is ® (—2.26 + 2.74 x 0.30) =
7.5%. The difference in denial probabilities is 2.2 percentage points lower.

(d) From the results in parts (a)-(c), we can see that the marginal effect of
the P/I ratio on the probability of mortgage denial depends on race. In the
probit regression functional form, the marginal effect depends on the level of
probability which in turn depends on the race of the applicant. The coefficient
on black is statistically significant at the 1% level.

9.2. Using the logit model in Equation (9.10):
(a) For a black applicant having a P /I ratio of 0.35, the probability that the ap-
plication will be denied is F'(—4.13 + 5.37 x 0.35 4+ 1.27) = eO o5 = 27.28%.

(b) With the P/I ratio reduced to 0 30, the probability of being denied is
F(—4.13+4+5.37x 0304 1.27) = TTe — L = = 22.29%. The difference in denial
probabilities compared to (a) is 4.99 percentage points lower.

(c) For a white applicant having a P/I ratio of 0.35, the probability that the
application will be denied is F'(—4.13 + 5.37 x 0.35) = m = 9.53%. If the

P/I ratio is reduced to 0.30, the probability of being denied is F' (—4.13 + 5.37 x 0.30)

11_,’_7@ = 7.45%. The difference in denial probabilities is 2.08 percentage points
ower

(d) From the results in parts (a)-(c), we can see that the marginal effect of
the P/I ratio on the probability of mortgage denial depends on race. In the
logit regression functional form, the marginal effect depends on the level of
probability which in turn depends on the race of the applicant. The coefficient
on black is statistically significant at the 1% level. The logit and probit results
are similar.
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9.3. (a) Since Y; is a binary variable, we know F (V;|X;) =1xPr(Y; = 1|X;) +
OXPI'( —O|X) ( ,=1|X1):60 —|—ﬁ1Xz Thus

E(u|X;) = E[Y;—(8o+B31X:)|Xi]
= EYiXi) = (Bo+ 8:Xi) =0

(b) Using Equation (2.7), we have

var (Y;|X;) = Pr(Y; =1[X;)[1 - Pr(Y; = 1|1X;)]
(Bo + B1X:) [1 — (By + 8:1X4)] -

Thus

var (u;| X;) = var[Y; — (8 + 6:X:), | Xi]
= var (V| X;) = (Bg + 6, X:) [1 — (By + 8:X:)] -

(¢) var(u;|X;) depends on the value of X;, so u; is heteroskedastic.

(d) The probability that ¥; = 1 conditional on X; is p; = By + 81 Xi. The
conditional probability distribution for the i*" observation is Pr (Y; = ;| X;) =
p? (1 —pi)l_y"’. Assuming that (X;,Y;) are i.i.d., i = 1,...,n, the joint proba-
bility distribution of Y7, ..., Y, conditional on the X's is

n

Pr(Yi=y1, ... Yo =yl X1,.. Xp) = J[Pr(¥i=ulX))

il_[ 1—y;
I

pit (L —ps)
(

Bo+ B X" [1— (By + By Xi)] ¥

n
=1
n

=1

The likelihood function is the above joint probability distribution treated as a
function of the unknown coefficients (3, and 3;).

9.4. (a) The coefficient on black is 0.084, indicating an estimated denial proba-
bility that is 8.4 percentage points higher for the black applicant.

(b) The 95% confidence interval is 0.084 + 1.96 x 0.023 = [3.89%, 12.91%].

(¢) The answer in (a) will be biased if there are omitted variables which are

race-related and have impacts on mortgage denial. Such variables would have
to be related with race and also be related with the probability of default on
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the mortgage (which in turn would lead to denial of the mortgage application).
Standard measures of default probability (past credit history and employment
variables) are included in the regressions shown in Table 9.2, so omitted variables
are unlikely to bias the answer in (a).

9.5. (a) Let ny = # (Y = 1), the number of observations on the random variable
Y which equals 1; and ng = # (Y =2). Then # (Y =3) = n —ny —na. The
joint probability distribution of Y7, ...,Y,, is

Pr(Vi=yi,...Yo=yn) = [[Pr(Vi=w) =p" ¢ (1-—p—q" ™ ™.
i=1

The likelihood function is the above joint probability distribution treated as a
function of the unknown coefficients (p and q).

(b) The MLEs of p and ¢ maximize the likelihood function. Let’s use the log-
likelihood function

L = InPr(Y1=uy1,..,Y, =yn)]
= nilnp+nelng+(n—ni—nz)ln(1—p—gq).

Using calculus, the partial derivatives of L are

oL ny MN—ng—nNe

— = — ————— and
Op p l-p—q

OL  na n—nig—ng

dq q l-p—q

Setting these two equations equal to zero and solving the resulting equations
yield the MLE of p and ¢:
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Chapter 10
Instrumental Variables Regression

10.1. (a) The change in the regressor, In (Bﬁ%’ggﬁttes —In (Pﬁ%%gettes), from

a $0.10 per pack increase in the retail price is In2.10 — In2.00 = 0.0488. The
expected percentage change in cigarette demand is —0.94 x 0.0488 x 100% =
—4.5872%. The 95% confidence interval is (—0.94 4+ 1.96 x 0.21) x 0.0488 x
100% = [—6.60%, —2.58%).

(b) With a 2% reduction in income, the expected percentage change in cigarette
demand is 0.53 x (—0.02) x 100% = —1.06%.

(¢) The regression in column (1) will not provide a reliable answer to the question
in (b) when recessions last less than 1 year. The regression in column (1) studies
the long-run price and income elasticity. Cigarettes are addictive. The response
of demand to an income decrease will be smaller in the short run than in the
long run.

(d) The instrumental variable would be too weak (irrelevant) if the F-statistic in
column (1) was 3.6 instead of 33.6, and we cannot rely on the standard methods
for statistical inference. Thus the regression would not provide a reliable answer
to the question posed in (a).

10.2. (a) When there is only one X, we only need to check that the instrument
enters the first stage population regression. Since the instrument is 7 = X
the regression of X onto Z will have a coefficient of 1.0 on Z, so that the
instrument enters the first stage population regression. Key Concept 4.3 implies
corr(X;,u;) = 0, and this implies corr(Z;,u;) = 0. Thus, the instrument is
€X0genous.

(b) Condition 1 is satisfied because there are no W’s. Key Concept 4.3 implies
that condition 2 is satisfied because (X;, Z;,Y;) are i.i.d. draws from their joint
distribution. Condition 3 is also satisfied by applying assumption 3 in Key
Concept 4.3. Condition 4 is satisfied because there are no W’s. Condition 5 is
satisfied because of conclusions in part (a).

~TSLS
(c) The TSLS estimator is 3, = 24X using Equation (10.4) in the text.
Since Z; = X;, we have

~TSLS Szy SXY ~OLS
SzXx Sx
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~TSLS  ~TSLS 5 \2
10.3. (a) The estimator 62 = L3 (Yi -G -0 Xi> is not con-

. = ~TSLS A 2 =R
sistent. Write this as 03 = ﬁZ?ﬂ (ui -5 (X; — XZ-)> , where u; =

~TSLS ~TSLS ~TSLS
Y, — 0B, — B4 X;. Replacing (3, with (,, as suggested in the question,

X 2 . N )
write this as 5% ~ 2 Y| <u,- —By(X; — Xi)) — Ly 24 lyBA(X -
X)? 4 2u;8,(X; — X;)]. The first term on the right hand side of the equation

converges to 02, but the second term converges to something that is non-zero.
~D . .
Thus &, is not consistent.

~ ~TSLS  ~TSLS _\2. .
(b) The estimator 5; = L (Y; — By -0 Xi) is consistent. Us-

ing the same notation as in (a), we can write 53 =~ L 3", u2, and this estimator
converges in probability to 2.

10.4. Using XZ = g + 71 Z;, we have )7( = @y + 71 Z and

3 (%- %) (n_y):ﬁli’l(zi—z) (Y~ ¥) = 152y

Sxy =
i=1
n 2 n
2 % % 2 5\2 _ ~2.2
sy = g X, — X :7715 (ZZ-—Z) = T187.
i=1 i=1

Using the formula for the OLS estimator in Key Concept 4.2, we have

iy = 22X,
Sz
Thus the TSLS estimator
BTSLS _ Sxy T1Szy _ Szy Szy _ Szy
! 78% 77}%322 77%18227£5sz22782)(.
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Chapter 11
Experiments and Quasi-Experiments

11.1. For students in kindergarten, the estimated small class treatment effect
relative to being in a regular class is an increase of 13.90 points on the test with
a standard error 2.45. The 95% confidence interval is 13.90 + 1.96 x 2.45 =
[9.098, 18.702].

For students in grade 1, the estimated small class treatment effect relative to
being in a regular class is an increase of 29.78 points on the test with a standard
error 2.83. The 95% confidence interval is 29.78 +1.96 x 2.83 = [24.233, 35.327].

For students in grade 2, the estimated small class treatment effect relative to
being in a regular class is an increase of 19.39 points on the test with a standard
error 2.71. The 95% confidence interval is 19.394+1.96 x 2.71 = [14.078, 24.702].

For students in grade 3, the estimated small class treatment effect relative to
being in a regular class is an increase of 15.59 points on the test with a standard
error 2.40. The 95% confidence interval is 15.59+1.96 x 2.40 = [10.886, 20.294].

11.2. (a) On average, a student in class A (the “small class”) is expected to
score higher than a student in class B (the “regular class”) by 15.89 points with
a standard error 2.16. The 95% confidence interval for the predicted difference
in average test scores is 15.89 £ 1.96 x 2.16 = [11.656,20.124].

(b) On average, a student in class A taught by a teacher with 5 years of expe-
rience is expected to score lower than a student in class B taught by a teacher
with 10 years of experience by 0.66 x 5 = 3.3 points. The standard error for the
score difference is 0.17 x 5 = 0.85. The 95% confidence interval for the predicted
lower score for students in classroom A is 3.3 +1.96 x 0.85 = [1.634, 4.966].

(¢) The expected difference in average test scores is 15.8940.66 x (—5) = 12.59.

Because of random assignment, the estimators of the small class effect and the

teacher experience effect are uncorreleated. Thus, the standard error for the
1

difference in average test scores is {2.162 + (-5)° x 0.172} © = 2.3212. The

95% confidence interval for the predicted difference in average test scores in

classrooms A and B is 12.59 £+ 1.96 x 2.3212 = [8.0404, 17.140].

(d) The intercept is not included in the regression to avoid the perfect multi-
collinearity problem that exists among the intercept and school indicator vari-
ables.

11.3. (a) This is an example of attrition, which poses a threat to internal
validity. After the male athletes leave the experiment, the remaining subjects
are representative of a population that excludes male athletes. If the average
causal effect for this population is the same as the average causal effect for the
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population that includes the male athletes, then the attrition does not affect the
internal validity of the experiment. On the other hand, if the average causal
effect for male athletes differs from the rest of population, internal validity has
been compromised.

(b) This is an example of partial compliance which is a threat to internal validity.
The local area network is a failure to follow treatment protocol, and this leads
to bias in the OLS estimator of the average causal effect.

(¢c) This poses no threat to internal validity. As stated, the study is focused
on the effect of dorm room Internet connections. The treatment is making the
connections available in the room; the treatment is not the use of the Internet.
Thus, the art majors received the treatment (although they chose not to use
the Internet).

(d) As in part (b) this is an example of partial compliance. Failure to follow
treatment protocol leads to bias in the OLS estimator.

11.4. The treatment effect is modeled using the fixed effects specification
Yie = ai + 81 Xt + wir-

(a) «; is an individual-specific intercept. The random effect in the regression
has variance
var (o; +u;s) = var (a;) + var (ui) + 2cov (o, ugt)
= oaton
which is homoskedastic. The differences estimator is constructed using data

from time period ¢t = 2. Using Equation (4.60), it is straightforward to see that
the variance for the differences estimator

var (X;2)  var (X))

~dif ferences var (a,— + Uig) 0'(21 + 0'3
nvar | 0,

(b) The regression equation using the differences-in-differences estimator is
AY; = 31 AX; + v

with AE/Z = }/Z'Q _}/2‘1, AXl = Xig — Xil, and Vi = Uj2 —U41- If the ith individual
is in the treatment group at time ¢t = 2, then AX; = X;o — X;1 = 1—-0 =
1 = Xjo. If the i*" individual is in the control group at time ¢ = 2, then
AX; = X2 — X;1 =0—0=0= X;2. Thus AX; is a binary treatment variable
and AX; = X2, which in turn implies var(AX;) = var(X;2). The variance for
the new error term is

012} = var (uj2 — u;1) = var (u;2) + var (u;1) — 2cov (U2, ;1)

_ 2
= 203,
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which is homoskedastic. Using Equation (4.60), it is straightforward to see that
the variance for the differences-in-differences estimator

(Bdiffs—in—diffs) o2 202
nvar — = :
v ! var (AX;)  var (X;2)

pdif ferences ~dif fs—in—dif f:
(c) When J(21 > 2. we'll have Var(ﬁlsz(’renms) < Var(ﬂlszs in szs) and

u?
the differences-in-differences estimator is more efficient then the differences es-
timator. Thus, if there is considerable large variance in the individual-specific
fixed effects, it is better to use the differences-in-differences estimator.

11.5. From the population regression Equation (11.13)
Yit = a; + 31 Xi¢ + Bo (Dy x Wi) + B Dy + vy,
we have

Yio — Y1 = 01 (Xio — Xi1) + By [(D2 — D1) x Wi] + By (D2 — D1) + (vig — v41) .

By defining AY; = Y;o —Y;1, AX; = X5 — X;1 (a binary treatment variable)
and u; = v;2 — v;1, and using D1 = 0 and D> = 1, we can rewrite this equation
as

AY; = ﬁo + /81Xi + ﬁzVVz + g,

which is Equation (11.5) in the case of a single W regressor.

11.6. The regression model is
Yie = By + 81Xt + B2Gi + B3 Bt + i,

Using the results in Section 6.3

?contTol,before _ EO
?control,after _ EO + BS
?treatment,befm’e _ BO n 52
?treatment,after _ EO + Bl 4 32 + ’6\3
Thus
~dif fs—in—dif fs _ (?treatment,after . ?treatment,before)
. (?control,aftm’ _ ?control,before)

= (31 + 33) - (33) = B1
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11.7. The covariance between 3,;X; and X; is

cov (81, Xi, X3) = E{[B,Xi — E(8,;X0)][Xi — E(Xy)]}

E {BMXZ‘Q — E (61, X:) Xi — B, XiE (X;) + E (61:X:) E (X,)}
= FE (ﬂuX?) ) (517:Xi) E (Xz)

Because X, is randomly assigned, X; is distributed independently of 3,;. The
independence means

E (51¢Xi) =F (ﬁu) E(Xz) and E (511‘X¢2) =F (312‘) E (ng) :

Thus cov(8,;X;, X;) can be further simplified:

cov (8, Xi, Xi) = E(By) [E (XZQ) - E? (Xi)]
= E(By) U%{
So
. . . . 2
oGt X)_ EGK_ g,
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Chapter 12
Introduction to Time Series Regression
and Forecasting

12.1. (a) Continuing to substitute Y;_; = 2.54+0.7Y;_,;_1 + ui—;, j = 1,2,...00,
into the expression Y; = 2.5+ 0.7Y;_1 + u; yields

Y; = 2540.7(2540.7Y 2 +u—1) +u
= (1+0.7)25+0.7%(2.5+0.7Y; 3 + us—2) + ug + 0.7Tus—q

(L+0.7+0.7+-) 254 (u + 0.7up—1 + 0.7%up—1 + - )
= 25) 07+ 0.7u;
=0 =0

1 =
= 25x +3 0.7
=0

1-07

o0

= 3+ ;0'7 Ui

Because u; is i.i.d. with E (u¢) = 0 and var(u;) = 9, the mean and variance of
Y; are

=0
25—
= =+ 07E (u)
1=0
25
= 2-28333
3

= Z 0.7%"var (u;_;)
i=0

= io.#i X 9
=0

9
= - =17.64T.
0w O
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(b) The 1st autocovariance is

cov (Y, Yi1) = cov(2.5+0.7Y—1 +uy, Y1)
= 0.7var (Y;_1) + cov (ug, Y1)
= 0.70%
= 0.7 x17.647 = 12.353.

The 2nd autocovariance is

cov (Y3, Y;—9)

cov [(140.7)2.5+0.7Y;2 + w + 0.Tus_1, ;o)
0.7%var (Y;_g) + cov (uy + 0.7u;_1, Y;_2)

= 0.7%%

0.7% x 17.647 = 8.6471.

(¢) The 1st autocorrelation is

Y;:, Y o2
corr (Vi Vi) = 0 Yen) 070y o
V/var (Y;) var (Y;_1) o3
The 2nd autocorrelation is
Y. Y 0.7%02
cort (Vi, Vi) = 0 Yero) Y = 0.49.

C Vvar(Y)var(Y,2) 0%

(d) The conditional expectation Y41 given Yr is

Y = 2.5+ 0.7V = 2.5+ 0.7 x 102.3 = 74.11.

12.2. (a) The statement is correct. The monthly percentage change in IP is

% x 100 which can be approximated by [In(IP;) — In(IP;—1)] x 100 =

100 x In( HI’il) when the change is small. Converting this into an annual (12

month) change yields 1200 x ln(%).

(b) The values of Y from the table are

Date | 2000:7 | 2000:8 | 2000:9 | 2000:10 | 2000:11 | 2000:12
1P 147.595 | 148.650 | 148.973 | 148.660 | 148.206 | 146.300
Y 8.55 2.60 —2.52 —3.67 —7.36
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The forecasted value of Y; in January 2001 is

Vi1 = L377+[0.318 x (—7.36)] + [0.123 x (—3.67)]
+[0.068 x (—2.52)] + [0.001 x (2.60)]
= —1.58.
(c) The t-statistic on Y;_19 is t = _0%%%4 = —1.0189 with an absolute value less

than 1.96, so the coefficient is not statistically significant at the 5% level.

(d) For the QLR test, there are 5 coeflicients (including the constant) that are
being allowed to break. Compared to the critical values for ¢ = 5 in Table 12.5,
the QLR statistic 3.45 is larger than the critical value 3.26 at the 10% level,
but less than the critical value 3.66 at the 5% level. Thus the hypothesis that
these coefficients are stable is rejected at the 10% significance level, but not at
the 5% significance level.

(e) There are 41 x 12 = 492 number of observations on the dependent variable.
The BIC and AIC are calculated from the formulas BIC(p) = In [m} +

(p+1) BE and AIC(p) = In [B52] 4+ (p+1) 2.

AR Order (p) | 1 2 3 1 5 6
SSR(p) 29175 | 28538 | 28393 | 28391 | 28378 | 28317

In [355@ 1| 40826 | 4.0605 | 4.0554 | 4.0553 | 4.0549 | 4.0527

(p+1) l”T 0.0252 | 0.0378 | 0.0504 | 0.0630 | 0.0756 | 0.0882
(p+1) % 0.0081 | 0.0122 | 0.0163 | 0.0203 | 0.0244 | 0.0285
BIC 4.1078 | 4.0983 | 4.1058 | 4.1183 | 4.1305 | 4.1409
AIC 4.0907 | 4.0727 | 4.0717 | 4.0757 | 4.0793 | 4.0812

The BIC is smallest when p = 2. Thus the BIC estimate of the lag length is 2.
The AIC is smallest when p = 3. Thus the AIC estimate of the lag length is 3.

12.3. (a) To test for a stochastic trend (unit root) in In (I P), the ADF statistic
is the t-statistic testing the hypothesis that the coefficient on In (I P;_1) is zero
versus the alternative hypothesis that the coefficient on In (IP,_1) is less than
zero. The calculated t-statistic is ¢t = 7)%%178 = —2.5714. From Table 12.4, the
10% critical value with a time trend is -3.12. Because —2.5714 > —3.12, the
test does not reject the null hypothesis that In (IP) has a unit autoregressive
root at the 10% significance level. That is, the test does not reject the null
hypothesis that In (I P) contains a stochastic trend, against the alternative that

it is stationary.

(b) The ADF test supports the specification used in Exercise 12.2. The use of
first differences in Exercise 12.2 eliminates random walk trend in In (I P).
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12.4. (a) The critical value for the F-test is 2.372 at a 5% significance level.
Since the Granger-causality F-statistic 2.35 is less than the critical value, we
cannot reject the null hypothesis that interest rates have no predictive content
for IP growth at the 5% level. The Granger causality statistic is significant at
the 10% level.

(b) The Granger-causality F-statistic of 2.87 is larger than the critical value, so

we conclude at the 5% significance level that IP growth helps to predict future
interest rates.

12.5. (a)
E(w-o] = B{W )+ (uw - o}

B (W = )| + 2B (W = ) (i — )+ (uyw — )

oty + (pw — ).

(b) Using the result in part (a), the conditional mean squared error
2
E [(Yt — fi1)? Y1, Yoo, . } = of“fl + (Vo1 — fi—1)

with the conditional variance O-§|t71 = F [(Yt — Yt|t_1)2]. This equation is

minimized when the second term equals zero, or when f;_1 = Y};_;.

(c) Applying Equation (2.25), we know the error w; is uncorrelated with u;_q if
E (ut|us—1) = 0. From Equation (12.14) for the AR(p) process, we have

U1 = Yi_1 — ﬁ(] — ﬁlYVt*Q — ﬁ2YVt*3 — = ﬁp}/tfpfl = f (Y}/,l,}/t,Q, T 7Yt7p71> ’

a function of Y;_; and its lagged values. The assumption E (us|Y;—1,Yi—2,-++) =
0 means that conditional on Y;_; and its lagged values, or any functions of Y;_;
and its lagged values, u; has mean zero. That is,

E (ut|ui—1) = E[ug| f (Yie1,Yi—2, -+, Yip—2)] = 0.

Thus u; and u;—; are uncorrelated. A similar argument shows that u; and w;_;
are uncorrelated for all j > 1. Thus u; is serially uncorrelated.

12.6. This exercise requires a Monte Carlo simulation on spurious regression.
The answer to (a) will depend on the particular “draw” from your simulation,
but your answers should be similar to the ones that I found.

(b) When I did these simulations, the 5%, 50% and 95% quantiles of the R?
were .00, .19, and .73. The 5%, 50% and 95% quantiles of the t-statisic were
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—12.9, —0.02 and 13.01. Your simulations should yield similar values. In 76%
of the draws the absolute value of the t-statistic exceeded 1.96.

(¢) When I did these simulations with 7' = 50, the 5%, 50% and 95% quantiles of
the R? were .00, .16, and .68. The 5%, 50% and 95% quantiles of the t-statisic
were —8.3, —0.20 and 7.8. Your simulations should yield similar values. In
66% of the draws the absolute value of the t-statistic exceeded 1.96.

When I did these simulations with T' = 200, the 5%, 50% and 95% quantiles
of the R? were .00, .17, and .68. The 5%, 50% and 95% quantiles of the t-statisic
were —16.8, —.76 and 17.24. Your simulations should yield similar values. In
83% of the draws the absolute value of the t-statistic exceeded 1.96.

The quantiles of the R? do not seem to change as the sample size changes.
However the distribution of the ¢t-statistic becomes more dispersed. In the limit
as T grows large, the fraction of the t-statistics that exceed 1.96 in absolute
values seems to approach 1.0. (You might find it interesting that % has
a well-behaved limiting distribution. This is consistent with the Monte Carlo
presented in this problem.)
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Chapter 13
Estimation of Dynamic Causal Effects

13.1. (a) See the table below. (; is the dynamic multiplier. With the 25% oil
price jump, the predicted effect on output growth for the ¢th quarter is 2503,
percentage points.

Period ahead Dynamic multiplier Predicted effect on 95% confidence interval
(2) (8;) output growth (250;) 25 x [8; £ 1.965E (5;)]
0 —0.055 —1.375 —4.021,1.271
1 —0.026 —0.65 —3.443,2.143
2 —0.031 —0.775 —3.127,1.577
3 —0.109 —2.725 —4.783,—0.667
4 —0.128 -3.2 —5.797,—0.603
5 0.008 0.2 —1.025,1.425
6 0.025 0.625 —1.727,2.977
7 —0.019 —0.475 —2.386,1.436
8 0.067 1.675 —0.015,0.149

(b) The 95% confidence interval for the predicted effect on output growth for
the #’th quarter from the 25% oil price jump is 25 x [3; == 1.96SE (3;)] percentage
points. The confidence interval is reported in the table in (a).

(¢c) The predicted cumulative change in GDP growth over eight quarters is

25 x (—0.055 — 0.026 — 0.031 — 0.109 — 0.128 4 0.008 + 0.025 — 0.019) = —8.375%

percentage points.

(d) The 1% critical value for the F-test is 2.407. Since the HAC F-statistic
3.49 is larger than the critical value, we reject the null hypothesis that all the
coefficients are zero at the 1% level.

13.2. (a) See the table below. (3, is the dynamic multiplier. With the 25% oil
price jump, the predicted change in interest rates for the ¢’th quarter is 253;.
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Period ahead Dynamic multiplier Predicted change in 95% confidence interval
(7) (8,) interest rates (253;) 25 x [B; £ 1.96SE (5,)]
0 0.062 1.55 —0.655, 3.755
1 0.048 1.2 —0.466, 2.866
2 —0.014 -0.35 —1.722,1.022
3 —0.036 —2.15 [~10.431,6.131]

1 —0.000 0 [—2.842, 2.842]
5 0.023 0.575 [—2.61, 3.76]

6 —0.010 —0.25 [—2.553,2.053]
7 —0.100 —2.5 [—4.362, —0.638]
8 —0.014 —0.35 [—1.575,0.875]

(b) The 95% confidence interval for the predicted change in interest rates for
the i’th quarter from the 25% oil price jump is 25 x [8; £ 1.96SE (3;)]. The
confidence interval is reported in the table in (a).

(c) The effect of this change in oil prices on the level of interest rates in period
t + 8 is the price change implied by the cumulative multiplier:

25 x (0.062 + 0.048 — 0.014 — 0.086 — 0.000 + 0.023 — 0.010 — 0.100 — 0.014) = —2.275.

(d) The 1% critical value for the F-test is 2.407. Since the HAC F-statistic
4.25 is larger than the critical value, we reject the null hypothesis that all the
coefficients are zero at the 1% level.

13.3. The dynamic causal effects are for experiment A. The regression in
exercise 13.1 does not control for interest rates, so that interest rates are assumed
to evolve in their “normal pattern” given changes in oil prices.

13.4. When oil prices are strictly exogenous, there are two methods to improve
upon the estimates. The first method is to use OLS to estimate the coefficients
in an ADL model, and to calculate the dynamic multipliers from the estimated
ADL coefficients. The second method is to use generalized least squares (GLS)
to estimate the coefficients of the distributed lag model.

13.5. Substituting

Xi = AXi+ X1 = A+ AX 1+ X0

- AXf + AXt_l + e+ AXt_p+1 + Xt—p
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into Equation (13.4), we have

Y, = ﬁo + 81X + B Xi—1 + 53Xt—2 +F /Br+1Xt—r + uy
= Bo+ B (AXi +AXy 1+ +AX 1 + X)
FP (AX 1+ +AXy 1 + X )
+ o+ 0, (AX i + X)) + B, 1 X
= Bo+ B AX: + (81 + B2) AXi1 + (By + B2 + B3) AXy—»
+o (Bt Byt B) AKX
+ (B + Byt B+ Brg) Xemy +ue.

Comparing the above equation to Equation (13.8), we see 69 = By, 61 = [q,
02 = By + Bo, 03 = By + Bo + B3, e yOrp1 =01 + B+ + B, + By
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Chapter 14
Additional Topics in Time Series Regression

14.1. Y; follows a stationary AR(1) model, Y; = B, + 3,Y;—1 + u;. The mean

of Y, is py = E (V) = 125, and E (w|Y;) = 0.

(a) The h-period ahead forecast of Y3, Yiypne = E (Yiqpn|Ys, Yio1,...), is

Yigne =EYenlYe,Yio1,..) = E(Bo+ B1Yern—1 +wlYs, Yioa, )
= Bo+B1Yesn—1t = Bo + 81 (Bo + B1Yirn—2pt)
(1+54)Bo + ﬂ%yﬂh—mt
= (1+8) B+ 6 (Bo + B1Yien—3pt)
= (1481 +57) By + B1Yesn—s

(148, +-+817") By + BLYs
_ ph
- T A,
1

= gy + 67 (Y- py).

(b) Substituting the result from part (a) into X; gives

Xt = Zisiytﬂ'\t = Zéi [y + 81 (Ve — piy)]

i=0 i=0
= MYZ(Si—l—(Yt—,u,Y)Z(ﬁl(S)i
1=0 i=0
R N (0%
= 151 586

14.2. (a) Because R1; follows a random walk (R1; = R1;_1 + u;), the i-period
ahead forecast of R1; is

th«i»i‘t - R1t+i71|t - R1t+i72|t R - th

Thus

k k
1 1
Rk’t = E E R1t+i|t + et = E i:E - th + et — R].t + Ct.

i=1
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(b) R1; follows a random walk and is I (1). Rkyisalso I (1). Given that both Rk,
and R1; are integrated of order one, and Rk; — R1; = e; is integrated of order
zero, we can conclude that Rk; and R1; are cointegrated. The cointegrating
coefficient is 1.

(c) When AR1; = 0.5AR1;_1 +us, AR1; is stationary but R1; is not stationary.
R1; = 1.5R1;_; — 0.5R1;_5 + u¢, an AR(2) process with a unit autoregressive
root. That is, R1; is I (1). The i-period ahead forecast of AR1; is

ARy = 0.5AR1 1)y = 0.5° ARy o =...... = 0.5'AR1,.
The i-period ahead forecast of R1; is

Rl = Rljpioqpe+ARL 4,
Rl o + AR qpp + ARLy e

- th + AthJ’,l‘t + e + AthJr’L‘t
= Rl +(0.5+---4+0.5) ARl

0.5(1 — 0.5
— Rl + 2" 2 AR,
Rl — =55 Atk
Thus
1 k 1 k )
Rk = ;thﬂ'\t te=1 ; [R1; + (1—0.5)ARL,] + e

== th + ¢AR1t + é¢.
where ¢ = %Zle(l —0.5"). Thus Rk; — R1; = ¢AR1; + ;. Thus Rk; and

R1; are cointegrated. The cointegrating coefficient is 1.

(d) When R1; = 0.5R1;_1+u;, R1; is stationary and does not have a stochastic
trend.  Rl; iy, = 0.5'R1;, so that Rk; = OR1; + e;, where 0 = %Zle 0.5%.
Since R1; and e; are I(0), then RE; is I(0).

14.3. wy follows the ARCH process with mean E (u;) = 0 and variance o7 =

1.0 + 0.5u?_;.

(a) For the specified ARCH process, u; has the conditional mean F (us|us—1) =0
and the conditional variance

var (ug|us_1) = 0? = 1.0 + 0.5u?_,.

The unconditional mean of u; is FE (u;) = 0, and the unconditional variance of
ug 18
var (ug) = var[F (ug|ug—1)] + F [var (ug|ug_1)]
= 0+1.0+05E (uf_,)
= 1.0+ 0.5var (ut—1) .
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The last equation has used the fact that E (uf) = var(us) + [E (u4)]* = var(uy)
since E (uy) = 0. Because of the stationarity, we have var(u;_1) =var(u;). Thus,
var(u;) = 1.0 + 0.5var(u;) which implies var(u;) = £2 = 2.

(b) When u;—1 = 0.2, 07 = 1.0 4+ 0.5 x 0.22 = 1.02. The standard deviation of
uy is o0y = 1.01. Thus

-3 Ut 3
Pr(-3< < = Pr < —<
r(3sws3) (101 101)

= $(2.9703) — (—2.9703) = 0.9985 — 0.0015 = 0.9970.

When u; 1 = 2.0, U? =1.04+ 0.5 x 2.0%2 = 3.0. The standard deviation of u; is
oy = 1.732. Thus

-3 Ut 3
-3 < < = < —<
Pr(-3swu<3) Pr (1732 1732)

= ®(1.732) — & (—1.732) = 0.9584 — 0.0416 = 0.9168.

14.4. Y; follows an AR(p) model V; = By + 81Yi-1 + ... + B,Yi—p + s
E (ut|Yi—1,Yi—2,...) = 0 implies F (us1p|Ys,Yi—1,...) = 0 for h > 1. The
h-period ahead forecast of Y; is
Yiene = E(YignlYs,Yioq,...)
= EBo+061Yean-1+ -+ B, Yien—p +uen|Ve, Yo, . ..)
= /60 +61E(3/t+h—1|yt,}/t—17~«)+...
+/8pE (}/t-i-h—p‘}/t,}/t—]m .. ) + E (ut+h|1/t7 }/25—17 .. )
= 60 + 51Y;+h—1|t +...+ /())py;i-l-h—pﬁ'

14.5. Because V; =Y; — Y1 + Y1 = Y1 + AY,

T

ZW Y (Yii +AY;) ZY221+Z AY;) +2ZY; JAY;.

t=1

So

T

RIS W,
t=1

N)I»—\

ZY% 1AY; =
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T T T-1 -1
Note that Y ,_, Y2 — >, V2, = ( i Y72 +Y7%) - (Yo2 +> i

Y2 —Y# = Y7 because Yy = 0. Thus:

1 < L1 )
IS vian = 4 [ >y
T 2 T 2

o1
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Chapter 15
The Theory of Linear Regression
with One Regressor

15.1. (a) Suppose there are n observations. Let b; be an arbitrary estimator of
(1. Given the estimator by, the sum of squared errors for the given regression
model is

> (i-bhX
i=1

~RLS
B, , the restricted least squares estimator of 3;, minimizes the sum of squared

~RLS
errors. That is, §; satisfies the first order condition for the minimization
which requires the differential of the sum of squared errors with respect to by
equals zero:

S 2(¥, - biX) (X)) =0,

Solving for b; from the first order condition leads to the restricted least squares
estimator

~RLS Yo X;Y;
B1 =37 x2°
Zi:l [

~RLS
(b) We show first that §;  is unbiased. We can represent the restricted least

) ~RLS
squares estimator 3;  in terms of the regressors and errors:

B?LS i XY 3, Xi (B X +wi) — B, + Z?:1Xiui.
Zz 1 X2 szl X2 Z?:l Xz2
Thus
~RLS Zn_ AXVZ’U,Z Zn_ XZE (u1|X1 e Xn)
E(ﬂ ):ﬁ +E<Z;1—):5 —i—E{ i=1 % R — 3,
' ! Zi:l Xzz ! Zi:l X22 !

where the second equality follows by using the law of iterated expectations, and
the third equality follows from

Z?:l XlE (ui|X1, e ,Xn)

=0
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because the observations are i.i.d. and E (u;|X;) = 0. (Note, F(u;| X1, ..., X)) =
E(u;|X;) because the observations are i.i.d.)

~RLS
Under assumptions 1-3 of Key Concept 15.1, 3, is asymptotically nor-
mally distributed. The large sample normal approximation to the limiting dis-

~RLS
tribution of 3;  follows from considering

BRLS ﬂ _ Z?:l Xiui _ %Z?:l Xiui
1 Bt n 2 1 n 2 -
Zi:l Xi n Zi:l Xi

Let’s consider first the numerator which is the sample average of v; = X;u;. By
assumption 1 of Key Concept 15.1, v; has mean zero: E (X;u;) = E [ X, E (u;]X;)] =
0. By assumption 2, v; is i.i.d. By assumption 3, var(v;) is finite. Let

v =1%" Xju;, then 02 = 02/n. Using the central limit theorem, we have
the sample average

1 i d
Ufog=——=>» v, — N (0, 1)
D G'U\/HZ:ZI K3

or

n
i=1

For the denominator, we have X? is i.i.d. with finite second variance (because
X has a finite fourth moment), so that by the law of large numbers

1 n
=3 X7 -5 E(X?).
n 4
i=1
Combining the results on the numerator and the denominator and applying
Slutsky’s theorem lead to

1 n

~RLS Tn > i Xiug d var (X;u;

V(B —ﬁu):\/;n—g—’N Qg .
n Zi:l X;

~RLS
(¢c) B;  is a linear estimator:

~RLS XY, & X;
B = e S,

;. == wherea; = —=——.
Z’iZI )(7,2 i=1 ' ZiZI )(7,2
The weight a; (¢ =1,...,n) depends on Xi,...,X, but not on Yy,...,Y,.
We have shown

~RLS

T.L, quz
1 =0+ Zio

Z?:l X22 .
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~RLS
B, is conditionally unbiased because

~RLS 1 Xy
E( |X17~-~7Xn> = E( % X2 |X17-~-7Xn>
i=1

Zz lXu'L
Y X7

ﬁl—i—E( | X1, .., X

= by
The final equality used the fact that

T Xy P OXGE (ui] X, ..., X
E 211 u|X1,...,Xn :Zzzl (r’lf| 127 ) ):0
because the observations are i.i.d. and E (u;]X;) = 0.
.- . ~RLS . .
(d) The conditional variance of 8; , given Xi,... ,X,, is
~RLS S X,
XX) - Ziizi Dl
Y Xvar (ui| Xy, .., X))
- n 2
(Zi:l XZQ)
_ D Xioy
(S X?)°
_ _ %
- Z?:l XZ2 .
(e) The conditional variance of the OLS estimator 3, is
2
var (,6’1|X1,... ,Xn> = Tu
Zz 1 (X X)
Since
d(xi-X ZX2—2XZX +nX?= ZX2—nX2<Z
i=1
the OLS estimator has a larger conditional variance: var (BI|X17 .. ,Xn) >
~RLS ~RLS
var( 8, |Xq,... ,Xn). The restricted least squares estimator ,6’1 is more
efficient.

(f) Under assumption 5 of Key Concept 15.1, we know that, conditional on

~RLS
Xi,..., X0, B is normally distributed since it is a weighted average of
normally distributed variables w;:
~RLS T Xy
Br =0+ —Zlﬁl )222-
>ic1 X;
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~RLS
Using the conditional mean and conditional variance of (3; derived in parts

~RLS
(c) and (d) respectively, we have the sampling distribution of 5; , conditional
on Xq,...,X,,is

~RLS

0.2
£ (o i)

(g) The estimator

_ Y Y _ Yoy (81 Xi + )
Z?ﬂ Xi Z?:l Xi

The conditional variance is

Z?:l i

:ﬂ1+

= D i Ui
X,...,Xn) - Lz X,
var (61| 1 var (61—’_22'_1)(1‘ 1
S var (wi] X1, ..., X,)

(S, Xi)°

2
noy,

(S, X"

~ ~RLS
The difference in the conditional variance of §; and 3,  is

2 2
nos;, o

n 2 n = 2°
(Zi:l X;) Zi:l X;

~ ~ RLS
var <61|X1,... ,Xn) — var (51 | X1, .. ,Xn) =

~ ~RLS
In order to prove var(51|X1,... ,Xn) > V:aur(ﬂ1 | Xq,. .. ,Xn>, we need to
show

n S 1
(o, X0)* X X7

or equivalently

n n 2
ny X7 > <ZX> :
i=1 i=1

This inequality comes directly by applying the Cauchy-Schwartz inequality

[Z(ai'bi)] Sza?'zb?

i=1
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which implies

n 2 n 2 n n n
<2Xi> = (Zl-XZ) <Y 1P X7 =n> X7
=1 i=1 i=1 i=1 =1

~ ~RLS
Thatisnd ;. X2 > (>, Xi)z, or var (ﬁ1|X17 . ,Xn) >var (B?L | X1, ... ,Xn).
Note: because Bl is linear and conditionally unbiased, the result var (B1 | X1, .., Xn) >

var (BfLS|X Tyee- ,Xn) follows directly from the Gauss-Markov theorem.

15.2. The sample covariance is

sy = (R (1)

n 1
] lgil(Xz px) (Yi = py) n—
where the final equality follows from the definition of X and Y which implies
that Y (X; —py) =n (X —px) and Y7, (Vi — py) =n (Y — py ), and by
collecting terms.

We apply the law of large numbers on sxy to check its convergence in
probability. It is easy to see the second term converges in probability to zero
because X — py and Y — py so (X — pyx) (Y — py) —— 0 by Slutsky’s
theorem. Let’s look at the first term. Since (X;,Y;) are ii.d., the random
sequence (X; — uy) (Y; — iy ) are i.i.d. By the definition of covariance, we have
E[(X; — pux) (Y; — py)] = oxy. To apply the law of large numbers on the first
term, we need to have

var [(X; — px) (Yi = py)] <00

which is satisfied since
var (X — i) (Vi =) < B [(Xs = ) (¥ — iy )’]

< B[X— 0] B[ - )] < e
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The second inequality follows by applying the Cauchy-Schwartz inequality, and
the third inequality follows because of the finite fourth moments for (X;,Y;).
Applying the law of large numbers, we have

—Z ) (Y — y) £ E(Xi—px)(Yi—py)] =oxy.

Also, —%5 — 1, so the first term for sxy converges in probability to oxy.

.. p
Combining results on the two terms for sxy, we have sxy — oxy.

15.3. (a) Using Equation (15.19), we have

i=1 (X X)
Iy (Xi-X)
i (X —px) = (X —px)]u
= \/ﬁ —
7 Lic (Xi = X)

VESL (K—m)u (X —py) XL w

\/5(31—/81) = \/_n

Y (X - X)° Iy, (Xi-X)°
_ \/721 1Y (X - NX) \/EZ?:l Ui
n i=1 (X X) % Z?:l (Xl - X)Z

by defining v; = (X; — py) u;

(b) The random variables uq,... ,u, are i.i.d. with mean y, = 0 and variance
0 < 02 < co. By the central limit theorem,

— \/72L Ui
(@ = 1) ~ LN, 1).

Ou

The law of large numbers implies X — v, or X — iy -, 0. By the consis-
tency of sample variance, % S (Xi -X )2 converges in probability to popu-
lation variance, var(X;), which is finite and non-zero. The result then follows
from Slutsky’s theorem.

(¢) The random variable v; = (X; — uy ) u; has finite variance:

var (v;) = var[(X; — py) ug]
< B[(Xi - ) u?]
< \/E [(Xi - MX)4] E [(Uz‘)ﬂ < 0.
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The inequality follows by applying the Cauchy-Schwartz inequality, and the
second inequality follows because of the finite fourth moments for (X, u;). The
finite variance along with the fact that v; has mean zero (by assumption 1 of
Key Concept 15.1) and v; is i.i.d. (by assumption 2) implies that the sample
average U satisfies the requirements of the central limit theorem. Thus,

LN
v \/; D i Vi
- oy

satisfies the central limit theorem.
(d) Applying the central limit theorem, we have

nZzll d

Ov

4, N(0,1).

Because the sample variance is a consistent estimator of the population variance,
we have

%Z?:l (Xi _X)z P

— 1.
var (X;)
Using Slutsky’s theorem,
1 n s
n =1 "7
o 4 N(0,1),

% ;’;1(Xi*)7()2
%

or equivalently

Ly

\/: i=1 Vi d var (v;)

_V _2—>N<0,—Z )
= 2aim1 (Xi_X) [

Thus

\/5(31—51> = \/%ZLW (X — px) \/722 1 Ui

% Z?:l (Xl - X) n (X X)
A, 0, var (v;) i
[var (X;)]
since the the second term for v/n (ﬁl — ﬂ1> converges in probability to zero as
shown in part (b).

15.4. (a) Write (ﬁl — Bl) = a,S, where a, = ﬁ and S, = \/n (ﬁl - 61)
Now, a, — 0 and S, 9, S where S is distributed N(0,a?). By Slutsky’s
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theorem a, S, —2+ 0 x S. Thus Pr(|3, — ;| > 6) — 0 for any 6 > 0, so that
B, — B, %5 0 and (3, is consistent.

2
(b) We have (i) 2% %, 1 and (ii) g(z) = /7 is a continuous function; thus from
the continuous mapping theorem

15.5. Because E (W*) = [E (W?)]* + var(W2), [E(W2)]* < E(W*) < .
Thus E (WQ) < o0.

15.6. Using the law of iterated expectations, we have

E(B)=E[E (51X, ... X.)| = E(3) =8,

15.7. (a) The joint probability distribution function of w;, u;, X;, Xjis f (us, uj, X;, Xj).
The conditional probability distribution function of u; and X; given u; and X

is f (Ui,XZ'|U,j,X]'). Since Uan', T = 1, ... ,n are lld.7 f (ui,Xi\uj,Xj) =

f (us, X;). By definition of the conditional probability distribution function, we

have

[ uiug, Xi, X)) = f (wi, Xilug, X5) f (ug, X;)
= fui, Xq) f(uj, X5).

(b) The conditional probability distribution function of u; and u; given X; and
X equals

Sy, Xa X)) (u, XG) f (ug, X)) 1y Iy
e 15 & R [e A 1o S R A Al

The first and third equalities used the definition of the conditional probability
distribution function. The second equality used the conclusion the from part
(a) and the independence between X; and X;. Substituting
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into the definition of the conditional expectation, we have
E(uin|Xz',Xj) = //u,-ujf(ui,uﬂXi,Xj)duiduj
//Uiujf(uz'|X¢)f(uj|Xj)duiduj

/uif(uilXi)dui/ujf(uj\Xj)duj
= E(w|Xi) E(u|X;).

(C) Let Q = (X17X2, "‘7Xi717Xi+17 L) Xn)u so that f(u1|X1a >Xn) = f(uZ|X17Q)
Write

J(X5,Q)
fui, X3) f(Q)
FX)F(Q)
f(uwXZ)
f(X3)
= f(ui|X3)

f(ui|Xz'7 Q)

where the first equality uses the definition of the conditional density, the second
uses the fact that (u;, X;) and @ are independent, and the final equality uses
the definition of the conditional density. The result then follows directly.
(d) An argument like that used in (c) implies

f (’LLZ'UJ'|X1, e Xn) = f (’LLZ‘Uj|Xi, XJ)
and the result then follows from part (b).
15.8. (a) Because the errors are heteroskedastic, the Gauss-Markov theorem
does not apply. The OLS estimator of 3, is not BLUE.

(b) We obtain the BLUE estimator of 3; from OLS in the following

Y, = 505(01‘ + 615(11' + u;

where
- Y; - 1
Vi = o Kp=
\/90+01|X,'| \/00+01‘X1‘|

~ X; - U;

—_——  and U = ————.
Vo + 61X, V0o + 01| X5]
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(¢) Using equations (15.2) and (15.19), we know the OLS estimator, 3, is

i (Xi—X) (Yi—Y) Yin (X - X) Ui
iy (Xi— X)Z oy (Xi - X)2

As a weighted average of normally distributed variables wu;, ﬁl is normally

31: :51"‘

distributed with mean E (Bl) = ;. The conditional variance of Bl, given
Xl,... ,Xn, is

N n XifX U
var (,6’1|X1, ... ,Xn) var (ﬂl + Ziza ) | X1, ... ,Xn>

i (X - X)?
S (X = X)) var (] X1, ., X))
s (- x))
Sy (X = X)° var (wi] X,)
{Z?ﬂ (Xi - X) 2}2
S (Xi = X)* (00 + 01 |X:])
[Z?:l (Xi - )_()2}2

Thus the exact sampling distribution of the OLS estimator, Bl, conditional on
Xl,... ,Xn, is

S0 (X = X)” (60 + 61 |Xi])
X (%= X)7]

/31 ~ N /61’

~WLS ~WLS
(d) The weighted least squares (WLS) estimators, (3, and #; , are solu-
tions to

n

_ _ N2
min (YZ —boXoi — b1X11‘) ;
bobr i

the minimization of the sum of squared errors of the weighted regression. The
first order conditions of the minimization with respect to by and b, are

Z 2 (f/z — by Xo; — b1)~(1i> (—Xol')

1=

iQ (37; — boXo; — blffu) (_Xli) = 0.

1=

0,
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Solving for by gives the WLS estimator

AWLS _ —Q0150 + QooS1
! QooRQ11 — Q%

where ~Qoo~= Z?Zl XOi)?Oi, Qo&: Z?zl XOZ'XIZ'AZ Q11 = 22;1 ):(u)?u, So =
St XoiYi, and Sy = Y, X1;Yi. Substituting Y; = 8, Xo; + 31 X1, +u; yields

~WLS —Qo1%0 + Qoo Z1
=B+
O =t e — Q3

n v o~ n >~
where ZO = Zi:l X()iui, and Z1 = Zi:l Xliui or

BWLS g = Z?zl(Qoo)?u‘ — Qo1 X0i)Us
! ! QooQ11 — Q%

~WLS
From this we see that the distribution of 8; ~ |Xi,... X, is N(ﬁl,ozwm),
1

where

o2 _ o2 57" (QooX1i — Qo1X0i)?
e (QooQ11 — Q3;)?
Q50Q11 + Q51 Q00 — 2Q00 Q3
(QOOQH - Q%1)2
Qoo
QooQ11 — Q%

where the first equality uses the fact that the observations are independent, the
second uses a% = 1, the definition of Qgyg, @11, and Qq1, and the third is an
algebraic simplification.

15.9. We need to prove

Using the identity X = puy + (X — gy ),

n

1 2. 9 _ 1 -
5;[(&—)() @2 - (X, - px) ] = (X—MX)QE;U?
1 n
—Q(X—Mx)g Z(Xz — [ix )U;
=1
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The definition of u; implies

U = up+ (Bo —Bo)* + (31 - 61X} - ZUi(Bo - Bo)
—2u; (B — B1)Xi +2(8 — 60)(31 - B1)Xi.

Substituting this into the expression for Y7 {(XZ - X) 2 a2 — (X; — py)? uf]

n

yields a series of terms each of which can be written as a,b,, where a,, L, 0and
b, = 13" | XIuf where r and s are integers. For example, a, = (X — uy),
ap = (31 — 1) and so forth. The result then follows from Slutksy’s theorem if
% S XTuf 2, d where d is a finite constant. Let w; = X7u$ and note that
w; is i.i.d. The law of large numbers can then be used for the desired result if
E(w?) < co. There are two cases that need to be addressed. In the first, both

r and s are non-zero. In this case write

B(w?) = B(X2u2) < \J[B(XI")|[E(ul)]

3 (3

and this term is finite if » and s are less than 2. Inspection of the terms shows
that this is true. In the second case, either r = 0 or s = 0. In this case the
result follows directly if the non-zero exponent (r or s) is less than 4. Inspection
of the terms shows that this is true.

15.10 Using (15.48) with W = 0 — 6 implies

E[(6 — 0)°]

Pr(|f -6 > 6) < ——

Since E[(6 — 0)2] — 0, Pr(|6 — 0] > §) — 0, so that § — § — 0.
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Chapter 16
The Theory of Multiple Regression

16.1. (a) The regression in the matrix form is

Y=X3+U
with
TestScore, 1 Income;
TestScores 1 Incomes
Y - 5 X_ =
TestScore, 1 Income,
Ui
(%) ﬂO
U= . ) /6 = ﬂl
: Ba
Up,
(b) The null hypothesis is
RB=r

versus R3 # r with

R=(0 0 1) and r =0.

Income?

Income3

2

Income;,

The heteroskedasticity-robust F-statistic testing the null hypothesis is

P=(Rp-x) [RS;R] " (RB-x)/q

with ¢ = 1. Under the null hypothesis,

F-YF, .

We reject the null hypothesis if the calculated F-statistic is larger than the
critical value of the F} , distribution at a given significance level.

16.2. (a) The sample size n = 20. We write the regression in the matrix form:

Y=X3+U
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with

Yy 1 X171 Xon
Yo 1 X102 Xopo
Y = . 9 X: . . 9
Yn 1 Xl,n X2,n
ui
U ﬂO
U = : ) /8: ﬂl
: Ba
uTL

The OLS estimator of the coefficient vector is

B=(XX)"XY.

with
n Z?=1 X1i 2?21 Xo;
X'X=| YL Xu  XLXh XL XuXe |,
2?21 Xii 2?21 X1 Xoi Z?:l X22i
and
i Yi
XY =| YL XuY;
D1 X2
Note
Y X = nX;=20x724=1448,
=1
ZX% = nX, =20 x 4.00 = 80.0,
i=1
Vi = nY =20x6.39=1278.
i=1
By the definition of sample variance
1 " —\2 1 - O
v = —Y) = V72— 2
Y n—lrl(y ) n—lgl n—1" "

we know
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Thus using the sample means and sample variances, we can get

SOXE = (- 1), +nki
=1
= (20 —1) x 0.80 + 20 x 7.24* = 1063.6,

and

ZXQQJ- = (n—1)s%, +nX;
=1
= (20— 1) x 2.40 + 20 x 4.00> = 365.6.

By the definition of sample covariance
n

- - — 1 [ —
Z(XZ-—X)(K;—Y):n_lzXﬂQ— XY,

; 4 n—1
1=1 =1

1
n—1

SXy =

we know

ZXiY; =(n—1)sxy +nXY.

i=1

Thus using the sample means and sample covariances, we can get

ZXuYi = (n—1)sx,y +nX1Y
i=1

= (20— 1) x 0.22 + 20 x 7.24 x 6.39 = 929.45,

n
ZXQi}/i = (n—1)sx,y +nXoY
i=1

(20 — 1) x 0.32 420 x 4.00 x 6.39 = 517.28,

and
" —_ —
ZXMX% = (n—1)sx,x, +nX1Xs
i=1

= (20—1) x 0.28 +20 x 7.24 x 4.00 = 584.52.

Therefore we have

20 144.8  80.0 127.8
X'X =| 144.8 1063.6 584.52 |, XY =| 929.45
80.0 584.52 365.6 517.28
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The inverse of matrix X’'X is

3.5373  —0.4631 —0.0337
(X'X)"'=| —04631 0.0684 —0.0080
—0.0337 —0.0080  0.0229

The OLS estimator of the coefficient vector is

B =(X'X)"'X'Y
3.5373  —0.4631 —0.0337 127.8 4.2063
= [ —04631 0.0684 —0.0080 929.45 | = 0.2520
—0.0337 —0.0080  0.0229 517.28 0.1033

That is, 3, = 4.2063, 3, = 0.2520, and 3, = 0.1033.

With the number of slope coefficients & = 2, the squared standard error of

2
the regression s is

1 1 A
2_— A‘:— /
s; = _12 u; k—lUU'

The OLS residuals U=Y - Y =Y — X3, so

0= (Y- X[a)' (Y- XB) = Y'Y - 28/X'Y + AX'XP.

‘We have
Y'Y = ZW (n—1)s% +nY?
- (20 —1) x 0.26 4 20 x 6.392 = 821.58,
¥ 42063 \' / 1278
BX'Y = 0.2520 929.45 | = 825.22,
0.1033 517.28
and
y ) 42063 \ ' 20  144.8  80.0 4.2063
BX'X3= 0.2520 144.8 1063.6 584.52 0.2520 | = 832.23.
0.1033 80.0 584.52 365.6 0.1033

Therefore the sum of squared residuals

SSR = Z —UU=YY-28XY+3XX3

82158 2 x 825.22 + 832.23 = 3.37.
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2

The squared standard error of the regression sz is

P2=— UU=—" x3.37=0.1982.

With the total sum of squares

TSS=Y (i~ Y)"=(n—1)s} = (20 — 1) x 0.26 = 4.94,

i=1
the R? of the regression is

SSR 3.37

Tss ' 1o1 0378

(b) When all six assumptions in Key Concept 16.1 hold, we can use the
homoskedasticity-only estimator 25 of the covariance matrix of 3, conditional
on X, which is

3.5373 —0.4631 —0.0337
—0.4631 0.0684 —0.0080 | x 0.1982
—0.0337 —0.0080  0.0229

0.7011  —0.09179 —0.0067
= —0.09179  0.0136  —0.0016
—0.0067 —0.0016  0.0045

= -1
¥ = (X'X)" s

u

The homoskedasticity-only standard error of 31 is
SE ([31> — 0.0136% = 0.1166.

The t-statistic testing the hypothesis 3; = 0 has a t,,_r_1 = ti7 distribution
under the null hypothesis. The value of the t-statistic is

B, 0.2520
@(31) ~0.1166

and the 5% two-sided critical value (from Appendix 2) is 2.11. Thus we can
reject the null hypothesis 8; = 0 at the 5% significance level.

=2.1612,

16.3. (a)
var (Q) = E[(Q - pg)?
= E[Q - )@ — 1g)]
= E[(/W —cpw) (W — C/Nw>/]

= E[(W — pw) (W — pw)Jc
= c'var(W)c =c'Swec

68



where the second equality uses the fact that @ is a scalar and the third equality
uses the fact that g = c’pyy .

(b) Because the covariance matrix Yy is positive definite, we have ¢/Ewe > 0
for every nonzero vector from the definition. Thus, var(Q) > 0. Both the vector
c and the matrix Yw are finite, so var(Q) = ¢/Xwec is also finite. Thus, 0 <
var(Q) < oco.

16.4. (a) The regression in the matrix form is

Y=X8+U
with
Yi 1 Xy (31
Y5 1 X5 U2
Y= Cox=l = T ()
. : ﬁl
Y, 1 X, Un

(b) Because X, = (1 X;), assumptions 1-3 in Key Concept 16.1 follow directly
from assumptions 1-3 in Key Concept 4.3. Assumption 4 in Key Concept 16.1
is satisfied since observations X; (i = 1,2,---n) are not constant and there is
no perfect multicollinearity among the two vectors of the matrix X.

(¢) Matrix multiplication of X’X and X'Y yields

XX — < n Z?:l Xi )
Z?:l Xi Z?=1 Xi2

Z?:l XiYi Z?:l X;Y;

The inverse of X’X is
n 71
n Zi: Xi
X'X)"" = ( . = 2)
Y Xi i X,
1 < 22;1 Xiz _Z?:I Xi )
2 n
n 21;1 XE - (Z?:l Xi) - Zi:l Xi n

-~ 1 i X /n =X
YL\ x 1)
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The estimator for the coefficient vector is

B = (X'X)'X'Y

1 ZZL1X12/71 -X nY
w0 ) (s

1 VYL X - XYL, XY,
S (X - X)? S XY - nXY '

Therefore we have

XL XY —nXY 3L, (X - X) (Vi —Y)

Bl n v n v
Zi:l (Xi - X)2 Zi:l (X’i - X)2
and
B _ Y Z?:l Xi2 -X Z;L:l XiY;
g =

Z?:l (Xi - X)Q

VY, (Xi—X +X)2 - XY, XY
ZZL:I (Xi - X)Z

YL (X - X)) +aXY - XY XY,

Z?:l (Xi - X)Q

. [2121 XY — TL_X2Y] %
Zi:l (Xi - X)

= Y- BlX.

We get the same expressions for Bo and 31 as given in Key Concept 4.2.

(d) The large-sample covariance matrix of B, conditional on X, converges to

1 _
Xp = gQXIZVQx1

with Qx = F (X;X}) and v = E (V,;V]) = E(X;u;u;X;). The column vector
X; for the ith observation is

o 1

T T X’z b

so we have
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u;
V= Xu; = ( Xows )>

and

u? Xiuf
X;u?2 X?u? )

1 (a2

Taking expectations, we get

Qx = F (X,X)) = ( i B0 >

and

Yv = E(ViV))
= (etah B )
_ < var (u;) cov (X;u;, w;) > .
cov (X;u;, w;) var (X;u;)

In the above equation, the third equality has used the fact that E (u;|X;) =0
o)

E(ui) = FE[E(u]X;)] =0,
E(Xu;) = F[X;FE(u|X;)] =0,

E(W?) = var(w)+[E(w)] = var () + [E (w;)]* = var (u;),
E (X7uf) var (X;u;) + [E (Xius)]® = var (Xu;)
E (Xiu?) = cov (Xug, u;) + E (Xju;) E (u;) = cov (Xuy, u;) .

The inverse of Qx is

o= (0 2 )‘1_;@(&2) )
x px B (XP) EXD) i\ —nx 1)

We now can calculate the large-sample covariance matrix of B, conditional on
X, from

1 _
X5 = EQxleQxl
1
n[E(X?) - )’

y ( E(X?) —ux ) ( var (u;) cov (Xus, ug) ) ( E(X?)

—lx 1 cov (Xug, ;) var (X;u;) —lix
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The (1,1) element of X5 is

[E (XQl) %] { = (XLQ)]Q var (u;) — 2B (X7) pxcov (Xiui, u;) + i var (Xquz)}
n 2) — u%

1
- n [E (XQ) o ,LL2 ]2V3,I“ [E (Xzz) U; — MXXz'Ui]

i X

_ o EE T e
T WEGD A7 { DIER }

1 Hx ) }
= ——var||(1— —=—/—7X; | u;
N [1 R [( E(X?)

E(x2)

= %, (the same as the expression for 02@ given in Key Concept 4.4)
n |k i 0
by defining
Hx
H,=1- X;.
E(X?)

The denominator in the last equality for the (1,1) element of ¥5 has used the
facts that

2 2
2
H?:(l_“_XXi) _1 4 X X2 - Hx

' E(X?) E? (X7) E(X7)""
SO
2\ _ MQX 2y _ 2px 1 ﬂ%{
E(Hi)_l—i_[E(Xf)]?E(XZ) B T T ER)

16.5. Px = X (X’X)"' X/, My =1, — Px.
(a) Px is idempotent because

PxPx = X (X'X) ' X'X (X'X) ' X' = X (X'X) ' X’ = Px.
Mx is idempotent because

MxMx = (I,—-Px)(I,—-Px)=1I,-Px —Px +PxPx
= I,—-2Px +Px =1, — Px = Mx.

PxMx = 0,,,, because

PxMx = Px (I, — Px) = Px — PxPx = Px — Px = O,1..
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(b) Because 8 = (X'X) ' X'Y, we have

Y =XB8=XXX)"'XY=PxY

which is Equation (16.27). The residual vector is

U=Y-Y=Y-PxY=(I,-Px)Y =MxY.

We know that Mx X is orthogonal to the columns of X:

MxX = (I, - Px) X=X -PxX =X - X (X'X) 'X'X=X-X =0,

so the residual vector can be further written as

U = MxY = Mx (X3 + U) = MxX8 + MxU = MxU

which is Equation (16.28).

16.6. The matrix form for Equation (8.14) is

Y=X3+U
with
Y — 5:/1 X1 — ):(1
Yo -1 X2 =Xy
YlT —):/1 XlT _Xl
Yo1 — Yo Xo1 — Xo
Yoo — Y5 Xo9 — X
Y = |, x= D
Yor — Ya Xor — Xo
Ynl - ?n an - )gn
Yn2 _Yn Xn2 _Xn
YnT _Yn XnT _Xn
[3 = b

The OLS “de-meaning” fixed effects estimator is
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Ul — Uy
Uiy — Up
Ul — Uy
U2 — U2
Uz — U2
UoT — U2
Unl — an
Un2 — an
UnT — an




Rewrite Equation (8.11) using n fixed effects as

In matrix form this is

with the subscripts denoting the size of the matrices. The matrices for variables

Yie = X8y + Dliyy + D2iyy + - - + Dngy,, + .

Yorx1 = Xorx1B1x1 + WarxnYnx1 + Unrxi

and coefficients are

Yy
Yo

Yor

Yn 1
Yn2

X1
X2
X1t
X1
Xo2
Xor

an
Xn2

ﬁ 2517

’y:

D14
D14
D14
D1o
D1o
D1y
D1,
D1,
D1,
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Y2

Tn

Using Equation (16.45), we have the estimator

~BV

D2,
D2,
D2,
D2,
D2,
D2,

D2,
D2,

D2,

B=XMwX) ' X'MwY
(MwX) (MwX)) ™ (MwX) (MwY).

Dn1
D?’Ll
D?’Ll
Dng
DTLQ
D?’LQ

Dn,,
Dn,,

Dn,,

where the second equality uses the fact that Myy is idempotent. Using the
definition of W,
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Uil
Ui2

uir
U21
U22

Ugm

Un1
Un2

UnT




X, 0 0
X; 0 0
X, 0 0
0 {2 0
0 X5
PwX = :
0 X 0
0 0 X,
0 0 X,
0 0 X,
and
X1 _Xl 0 0
X2 — X4 0 0
X1 — X3 0 IS 0
0 Xop ,EQ 0
0 Xog — X9 - 0
MwX = : : . :
0 Xor — Xo -+ 0
0 0 an _Yn
0 0 Xn2 77n
0 0 XnT *Yn

so that MwX = X. A similar calculation shows MwY =Y. Thus

~BV ~, ~\—1 - - ~ DM
e :(X'X) XY =53,

16.7. (a) We write the regression model, Y; = 6, X; + B,W; + u;, in the matrix
form as

Y=X3+W~+U

(6]



with

Yi X1 Wi Uy
Yo Xo Wa Us
Y = . 5 X = . ) W = . ) U= . ’
ﬂ 51, Y _52

The OLS estimator is
3, (/XX XW)\ /XY
3, — \wx ww W'Y
_ (B XX XW /o xU
=\ 5, WX WW wW'U

_ (B ) XX IXW '/ 1xu
=\ g Iwx Iww Iwu

_ B1 LY XE YL XW - Ly Xiui
B B 1 Zz 1 WX 1 S WP Ly Wi

By the law of large numbers 1 37" | X2 55 B(X?); L3 w2 - B(W?);
Ly Xaw; L, E(XW) =0 (because X and W are mdependent with means
of zero); L 3" | Xju; 2, E(Xu) =0 (because X and u are independent with
means of zero);~ Y1 | Wiu; 2, E(Wu). Thus

( A ) () (50 eim) (o)

_ Piow
Ba + E(Wg)) '

(b) From the answer to (a) By —— 3 + Sur E(W“) # (34 if E(Ww) is nonzero.

(c) Consider the population linear regression of w; onto Wj:
U; = )\VVZ + a;

where A\ = E(Wwu)/E(W?). In this population regression, by construction,
E(aW) = 0. Using this equation for u; rewrite the equation to be estimated as
Yi = X8, +WiBy+uy
= XiBy + Wi(By +A) + a;
- X761 + Wzo + a;

76



where 0 = 35+ A. A calculation like that used in part (a) can be used to show
that

\/ﬁ(@ - 51) _ ( 1% Zn?:1 X7 %12%1 XiWi >1 ? 2221 X;a;
Vn(By —0) 2 Wi i W7 7 > iz Wia;

(7 ) (3

where S; is distributed N (0,02 E(X3)). Thus by Slutsky’s theorem

o2

N J 2
Vn(B, = B,) — N(0, m)

Now consider the regression that omits W, which can be written as:

Y; - Xi/31 + d,;
where d; = W;0 + a,;. Calculations like those used above imply that

2
04

Vi =) =5 N (0. 57 ).

Since 02 = 02 + 0°E(W?), Ehe asymptotic variance of B; is never smaller than
the asymptotic variance of (3.

16.8. (a) The regression errors satisfy u; = 4y and w; = 0.5u;—1 + @; for ¢ =
2,3,...,n with the random variables @; (i = 1,2,... ,n) being i.i.d. with mean
0 and variance 1. For ¢ > 1, continuing substituting u;—; = 0.5u;—j_1 + Wi—;
(j=1,2,..5i—2) and u; = @ into the expression u; = 0.5u;_1 + @; yields

u; = 0.5u;_1 + 1
= 0.5(0.5u;— + @j—1) + U;
0.52 (0.5u;_3 + @;_2) 4 0.50;_1 + s
0.5% (0.5u;j—g + @i—3) + 0.5 o + 0.50;_1 + i

= 0.5 0 + 0.5 20 + 0.5 30Ug + - - - + 0.5%TU;_o + 0.50%;_1 + U;
= ) 0577a,
j=1

Though we get the expression u; = 23:1 0.5=7@; for i > 1, it is apparent that
it also holds for 4 = 1. Thus we can get mean and variance of random variables
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E(u;) = Y 0577E(iy;) =0,
i : - 2)!
o? =var (u;) = Z (0.577) ? var (aj) Z = %
i=1 =t .

In calculating the variance, the second equality has used the fact that u; is i.i.d.
Since u; = 37—, 0.5" 7@, we know for k > 0,

i+k i+k
Uik = 205”’c I = 0.5 205z i+ Y 05 a,
j=i+1
i+k
= + ) 05 g,
j=i+1

Because u; is i.i.d., the covariance between random variables u; and w4 is
i+k
k it hk—] ~
cov (ug, uipr) = cov | u;, 0.5%u; + E 0.5 k=i g
j=i+1
= 0.5%7

Similarly we can get
cov (us, ui—p) = 0.5%02 .

The column vector U for the regression error is

U

Uz

U =
Un
It is straightforward to get
FE (u?) E(ujug) -+ E(ujuy)
E (ugui) E (u3 s E(uguy,)
E(UU) = . (1) . .

Because F (u;) = 0, we have E (u?) =var(u;) and E (u;u;) =cov(u;, u;). Sub-
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stituting in the results on variances and covariances, we have

U% 0.50% 0_520% 0'530% . 0.577,710_%

050’% 0'% 050'3 0.520-3 L. 0.5n720,§

0.5%02 0.503 o3 0563 - 0.5"3¢3

Q=E(UU') = 0.5%0% 0.5%03 0.50% o2 0.5 402
05" 0?2 05" 203 0.5"30% 05" 107 - o2

. 1-(0.5%)"
with 012 = T-0352 -
(b) The original regression model is

Y = By + 581X + us.

Lagging each side of the regression equation and substracting 0.5 times this lag
from each side gives

Y; —0.5Y;_1 = 0508, + 81 (X; —0.5X;_1) +u; — 0.5u;_1
fori=2,...,n with u; — 0.5u;_1 = u;. Also
Y1 =08+ 6. X1+
with u; = u;. Thus we can define a pair of new variables
(ffi, X, XQ) — (Y = 0.5Y;_1, 0.5, X; — 0.5Xi_1),
for i =2,...,n and (}71, X'H,X’Ql> = (Y1,1, X3,), and estimate the regression
equation
Y; = By X1 + By Xai + U

using data for ¢ = 1,...,n. The regression error u; is i.i.d. and distributed
independently of X;, thus the new regression model can be estimated directly
by the OLS.

16.9. (a) Using Equation (16.45) we know
B = (XMwX) ' X'MwY
= (X'MwX) ' X'Mw (X3 + W + U)
= B+ (X'MwX) ' X'MwU.
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The last equality has used the orthogonality MywW = 0. Thus

B—B=XMwX)  X'MwU = (n"'X'MwX) ' (n'X'MwU).

(b) Using Mw = I, — Pw and Pw = W (W'W) ' W’ we can get

n I X'MwX = n'X'(I,-Pw)X
= n 1 X'X-n"'X'PwX
= 2T X'X- (0 X'W) (0 'WW) T (0 'W'X) |
First consider n™'X'X =1 %"  X,;X!. The (j,I) element of this matrix is
%ZLI X;iXi;. By Assumption (ii), X, is i.i.d., so X;;Xy; is i.i.d. By As-
sumption (iii) each element of X; has four moments, so by the Cauchy-Schwarz
inequality X;; X;; has two moments:

E(X3XE) < /B (X4) - B (X}) < oo

Because X;; X;; is i.i.d. with two moments, %ZLI X;i Xy obeys the law of
large numbers, so

1 n
~ > XXy -5 B (XjiXi).
i=1
This is true for all the elements of n ' X'X, so
1 n
—1~7/ ;P /
X'X =— X; X E(X;X;) = ¥xx-
n - ; i — E( ) = Zxx

Applying the same reasoning and using Assumption (ii) that (X;, W,,Y;) are
iid. and Assumption (iii) that (X;, W;, ;) have four moments, we have

> WW; 5 E(W,W)) = Sww,
i=1

1

n

n'WW =

1 n
’I’L_1X/W = ZXZW; L) E (XZW;) = Exw,
n =1

and

1 n
WX == "W, X, 5 E(W;X]) = Swx.
n i=1
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From Assumption (iii) we know Yxx, Yww, Zxw, and Ywx are all finite
nonzero. Slutsky’s theorem implies

nTIX'MwX = ' XX- (T X'W) (0T TWW) T (0 TWYX)
L Sxx — Uxw Sww Ewx
which is finite and invertible.

(¢) The conditional expectation

E(w|X, W) B (u1|X1, W)
E(u2|X7W) E(UQ‘X%WZ)
E(UX, W) . = .
E (un|X, W) E (un| X0, W,,)
) W
W6 W),
= . = . 0 = W6.
' W

The second equality used Assumption (ii) that (X;, W,,Y;) are i.i.d., and the
third equality applied the conditional mean independence assumption (i).

(d) In the limit

n I X'MwU 25 E(X'MwU|X, W) = X'MwE (UX,W) = X’MwyW4§ = 0, «,

because MywW = 0.
(e) n~'X'MwX converges in probability to a finite invertible matrix, and

n ' X'MwU converges in probability to a zero vector. Applying Slutsky’s
theorem,

B-B=n"XMwX) " (n'X'MwU) - 0.

This implies
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